유한 수학 예제

정의역 구하기 자연로그 x^4e^(-x^3)
단계 1
식이 정의된 지점을 알아내려면 의 진수를 보다 크게 설정해야 합니다.
단계 2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.2
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
와 같다고 둡니다.
단계 2.2.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 2.2.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.1
로 바꿔 씁니다.
단계 2.2.2.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 2.2.2.2.3
플러스 마이너스 입니다.
단계 2.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
와 같다고 둡니다.
단계 2.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
지수에서 변수를 제거하기 위하여 방정식의 양변에 자연로그를 취합니다.
단계 2.3.2.2
이(가) 정의되지 않으므로 방정식을 풀 수 없습니다.
정의되지 않음
단계 2.3.2.3
에 대한 해가 없습니다.
해 없음
해 없음
해 없음
단계 2.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 2.5
각 근을 사용하여 시험 구간을 만듭니다.
단계 2.6
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.6.1.2
원래 부등식에서 로 치환합니다.
단계 2.6.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 2.6.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 2.6.2.2
원래 부등식에서 로 치환합니다.
단계 2.6.2.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 2.6.3
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
단계 2.7
해는 모두 참인 구간으로 이루어져 있습니다.
또는
또는
단계 3
정의역은 수식을 정의하는 모든 유효한 값입니다.
구간 표기:
조건제시법:
단계 4