문제를 입력하십시오...
유한 수학 예제
단계 1
분자에 분모의 역수를 곱합니다.
단계 2
단계 2.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 2.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 3
단계 3.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
단계 3.1.1
에서 를 인수분해합니다.
단계 3.1.2
를 + 로 다시 씁니다.
단계 3.1.3
분배 법칙을 적용합니다.
단계 3.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 3.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 3.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 3.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 4
단계 4.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
단계 4.1.1
에서 를 인수분해합니다.
단계 4.1.2
를 + 로 다시 씁니다.
단계 4.1.3
분배 법칙을 적용합니다.
단계 4.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 4.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 4.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 4.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 5
단계 5.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 5.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 6
단계 6.1
의 공약수로 약분합니다.
단계 6.1.1
에서 를 인수분해합니다.
단계 6.1.2
공약수로 약분합니다.
단계 6.1.3
수식을 다시 씁니다.
단계 6.2
의 공약수로 약분합니다.
단계 6.2.1
공약수로 약분합니다.
단계 6.2.2
수식을 다시 씁니다.
단계 6.3
에 을 곱합니다.
단계 6.4
의 공약수로 약분합니다.
단계 6.4.1
공약수로 약분합니다.
단계 6.4.2
수식을 다시 씁니다.