유한 수학 예제

간단히 정리하기 (((12y^2-7y-12)/(12y^2+25y+12))/(12y^2-25y+12))/(16y^2-24y+9)
단계 1
분자에 분모의 역수를 곱합니다.
단계 2
분자에 분모의 역수를 곱합니다.
단계 3
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
에서 를 인수분해합니다.
단계 3.1.2
+ 로 다시 씁니다.
단계 3.1.3
분배 법칙을 적용합니다.
단계 3.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 3.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 3.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 4
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
에서 를 인수분해합니다.
단계 4.1.2
+ 로 다시 씁니다.
단계 4.1.3
분배 법칙을 적용합니다.
단계 4.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 4.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 4.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 5
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
공약수로 약분합니다.
단계 5.2
수식을 다시 씁니다.
단계 6
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
형태의 다항식에 대해 곱이 이고 합이 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
에서 를 인수분해합니다.
단계 6.1.2
+ 로 다시 씁니다.
단계 6.1.3
분배 법칙을 적용합니다.
단계 6.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 6.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 6.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 7
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1.1
에서 를 인수분해합니다.
단계 7.1.2
공약수로 약분합니다.
단계 7.1.3
수식을 다시 씁니다.
단계 7.2
을 곱합니다.
단계 8
완전제곱 법칙을 이용하여 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
로 바꿔 씁니다.
단계 8.2
로 바꿔 씁니다.
단계 8.3
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 8.4
다항식을 다시 씁니다.
단계 8.5
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 9
조합합니다.
단계 10
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
를 옮깁니다.
단계 10.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.1
승 합니다.
단계 10.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 10.3
에 더합니다.
단계 11
을 곱합니다.