유한 수학 예제

구간 표기법으로 나타내기 x+12/x<7
단계 1
방정식 항의 최소공분모를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 1.2
1과 식의 최소공배수는 그 식 자체입니다.
단계 2
의 각 항에 을 곱하고 분수를 소거합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
의 각 항에 을 곱합니다.
단계 2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
을 곱합니다.
단계 2.2.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.2.1
공약수로 약분합니다.
단계 2.2.1.2.2
수식을 다시 씁니다.
단계 3
부등식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
부등식의 양변에서 를 뺍니다.
단계 3.2
부등식을 방정식으로 바꿉니다.
단계 3.3
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 3.3.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 3.4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 3.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
와 같다고 둡니다.
단계 3.5.2
방정식의 양변에 를 더합니다.
단계 3.6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
와 같다고 둡니다.
단계 3.6.2
방정식의 양변에 를 더합니다.
단계 3.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 4
의 정의역을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 4.2
정의역은 수식을 정의하는 모든 유효한 값입니다.
단계 5
각 근을 사용하여 시험 구간을 만듭니다.
단계 6
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.1.2
원래 부등식에서 로 치환합니다.
단계 6.1.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
True
True
단계 6.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.2.2
원래 부등식에서 로 치환합니다.
단계 6.2.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 6.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.3.2
원래 부등식에서 로 치환합니다.
단계 6.3.3
좌변 이 우변 보다 작으므로 주어진 명제는 항상 참입니다.
True
True
단계 6.4
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 6.4.2
원래 부등식에서 로 치환합니다.
단계 6.4.3
좌변 이 우변 보다 작지 않으므로 주어진 명제는 거짓입니다.
False
False
단계 6.5
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
거짓
거짓
단계 7
해는 모두 참인 구간으로 이루어져 있습니다.
또는
단계 8
부등식을 구간 표기로 표현합니다.
단계 9