유한 수학 예제

Résoudre pour x 2 자연로그 x = 자연로그 x+4+ 자연로그 2x
단계 1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
를 로그 안으로 옮겨 을 간단히 합니다.
단계 2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
로그의 곱의 성질 를 사용합니다.
단계 2.1.2
분배 법칙을 적용합니다.
단계 2.1.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.3.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 2.1.3.2
을 곱합니다.
단계 2.1.4
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.4.1
를 옮깁니다.
단계 2.1.4.2
을 곱합니다.
단계 3
방정식의 등호가 성립하려면 방정식의 두 변에 있는 로그의 진수가 동일해야 합니다.
단계 4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
가 식의 우변에 있으므로, 두 변을 바꿔 식의 좌변으로 옮깁니다.
단계 4.2
을 포함하는 모든 항을 방정식의 좌변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
방정식의 양변에서 를 뺍니다.
단계 4.2.2
에서 을 뺍니다.
단계 4.3
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
에서 를 인수분해합니다.
단계 4.3.2
에서 를 인수분해합니다.
단계 4.3.3
에서 를 인수분해합니다.
단계 4.4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 4.5
와 같다고 둡니다.
단계 4.6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.6.1
와 같다고 둡니다.
단계 4.6.2
방정식의 양변에서 를 뺍니다.
단계 4.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 5
이 참이 되지 않게 하는 해를 버립니다.