유한 수학 예제

Résoudre pour x x^7+x^2=6x^5+6
단계 1
방정식의 양변에서 를 뺍니다.
단계 2
방정식의 양변에서 를 뺍니다.
단계 3
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
항을 다시 정렬합니다.
단계 3.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 3.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 3.3
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
와 같다고 둡니다.
단계 5.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
방정식의 양변에 를 더합니다.
단계 5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 5.2.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.3.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 5.2.3.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 5.2.3.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
와 같다고 둡니다.
단계 6.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
방정식의 양변에서 를 뺍니다.
단계 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 6.2.3
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.1
로 바꿔 씁니다.
단계 6.2.3.2
실수를 가정하여 근호 안의 항을 빼냅니다.
단계 7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 8
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: