문제를 입력하십시오...
유한 수학 예제
단계 1
단계 1.1
의 공약수로 약분합니다.
단계 1.1.1
의 마이너스 부호를 분자로 이동합니다.
단계 1.1.2
에서 를 인수분해합니다.
단계 1.1.3
에서 를 인수분해합니다.
단계 1.1.4
공약수로 약분합니다.
단계 1.1.5
수식을 다시 씁니다.
단계 1.2
의 공약수로 약분합니다.
단계 1.2.1
에서 를 인수분해합니다.
단계 1.2.2
에서 를 인수분해합니다.
단계 1.2.3
공약수로 약분합니다.
단계 1.2.4
수식을 다시 씁니다.
단계 1.3
에 을 곱합니다.
단계 1.4
에 을 곱합니다.
단계 1.5
에 을 곱합니다.
단계 1.6
의 공약수로 약분합니다.
단계 1.6.1
에서 를 인수분해합니다.
단계 1.6.2
공약수로 약분합니다.
단계 1.6.3
수식을 다시 씁니다.
단계 1.7
에 을 곱합니다.
단계 1.8
에 을 곱합니다.
단계 1.9
의 공약수로 약분합니다.
단계 1.9.1
에서 를 인수분해합니다.
단계 1.9.2
에서 를 인수분해합니다.
단계 1.9.3
공약수로 약분합니다.
단계 1.9.4
수식을 다시 씁니다.
단계 1.10
의 공약수로 약분합니다.
단계 1.10.1
에서 를 인수분해합니다.
단계 1.10.2
에서 를 인수분해합니다.
단계 1.10.3
공약수로 약분합니다.
단계 1.10.4
수식을 다시 씁니다.
단계 1.11
에 을 곱합니다.
단계 1.12
에 을 곱합니다.
단계 1.13
에 을 곱합니다.
단계 1.14
및 의 공약수로 약분합니다.
단계 1.14.1
에서 를 인수분해합니다.
단계 1.14.2
공약수로 약분합니다.
단계 1.14.2.1
에서 를 인수분해합니다.
단계 1.14.2.2
공약수로 약분합니다.
단계 1.14.2.3
수식을 다시 씁니다.
단계 1.15
마이너스 부호를 분수 앞으로 보냅니다.
단계 2
단계 2.1
을(를) 공통분모가 있는 분수로 표현합니다.
단계 2.2
공통분모를 가진 분자끼리 묶습니다.
단계 2.3
에서 을 뺍니다.
단계 3
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: