유한 수학 예제

기대값 구하기 table[[x,P(x)],[5,0.170],[4,0.184],[3,0.195],[2,0.146],[1,0.304]]
단계 1
주어진 표가 확률분포에 필요한 2가지 성질을 만족하는지 증명합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
이산 확률변수 는 분리된 값의 집합을 갖습니다 (예를 들어 , , ...). 이산 확률변수의 확률분포는 각각의 가능한 값 에 확률 를 할당합니다. 각 에 대해 확률 부터 까지의 값을 가지며 모든 가능한 값에 대한 확률의 합은 입니다.
1. 각 에 대해 입니다.
2. .
단계 1.2
사이에 속하므로 확률분포의 첫 번째 성질을 만족합니다.
사이에 속합니다
단계 1.3
사이에 속하므로 확률분포의 첫 번째 성질을 만족합니다.
사이에 속합니다
단계 1.4
사이에 속하므로 확률분포의 첫 번째 성질을 만족합니다.
사이에 속합니다
단계 1.5
사이에 속하므로 확률분포의 첫 번째 성질을 만족합니다.
사이에 속합니다
단계 1.6
사이에 속하므로 확률분포의 첫 번째 성질을 만족합니다.
사이에 속합니다
단계 1.7
에 대해 확률 부터 까지의 닫힌 구간에 존재하며 이는 확률분포의 첫 번째 성질을 만족합니다.
모든 x 값에 대해
단계 1.8
모든 값에 대한 확률의 합을 구합니다.
단계 1.9
모든 가능한 값에 대한 확률의 합은 입니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.9.1
에 더합니다.
단계 1.9.2
에 더합니다.
단계 1.9.3
에 더합니다.
단계 1.9.4
에 더합니다.
단계 1.10
모든 가능한 값에 대한 확률의 합이 이 아니므로, 확률 분포의 두번째 성질을 만족하지 않습니다.
단계 1.11
에 대해 확률 부터 까지의 닫힌 구간에 존재합니다. 그러나 모든 에 대한 확률의 합이 이 아니므로 해당 표는 확률분포의 두 가지 성질을 만족하지 않습니다.
주어진 표는 확률 분포의 두 가지 성질을 만족하지 않습니다
주어진 표는 확률 분포의 두 가지 성질을 만족하지 않습니다
단계 2
주어진 표는 확률 분포의 두 가지 성질을 만족하지 않으므로, 이 표를 이용하여 기대 평균을 구할 수 없습니다.
기대평균을 구할 수 없음