미적분 예제

적분 계산하기 구간 0 에서 pi 까지의 x 에 대한 (1+sin(x))^2 의 적분
단계 1
을 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 바꿔 씁니다.
단계 1.2
분배 법칙을 적용합니다.
단계 1.3
분배 법칙을 적용합니다.
단계 1.4
분배 법칙을 적용합니다.
단계 1.5
을 다시 정렬합니다.
단계 1.6
을 곱합니다.
단계 1.7
을 곱합니다.
단계 1.8
을 곱합니다.
단계 1.9
승 합니다.
단계 1.10
승 합니다.
단계 1.11
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.12
에 더합니다.
단계 1.13
에 더합니다.
단계 2
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 3
상수 규칙을 적용합니다.
단계 4
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 5
에 대해 적분하면 입니다.
단계 6
반각 공식을 이용해 로 바꿔 씁니다.
단계 7
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 8
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 9
상수 규칙을 적용합니다.
단계 10
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 11
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1.1
를 미분합니다.
단계 11.1.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 11.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 11.1.4
을 곱합니다.
단계 11.2
에 극한의 하한을 대입합니다.
단계 11.3
을 곱합니다.
단계 11.4
에 극한의 상한을 대입합니다.
단계 11.5
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 11.6
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 12
을 묶습니다.
단계 13
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 14
에 대해 적분하면 입니다.
단계 15
대입하여 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.1
, 일 때, 값을 계산합니다.
단계 15.2
, 일 때, 값을 계산합니다.
단계 15.3
, 일 때, 값을 계산합니다.
단계 15.4
, 일 때, 값을 계산합니다.
단계 15.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.5.1
에 더합니다.
단계 15.5.2
에 더합니다.
단계 16
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.1
의 정확한 값은 입니다.
단계 16.2
의 정확한 값은 입니다.
단계 16.3
을 곱합니다.
단계 16.4
에 더합니다.
단계 16.5
을 묶습니다.
단계 17
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 17.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 코사인이 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 17.2
의 정확한 값은 입니다.
단계 17.3
을 곱합니다.
단계 17.4
을 곱합니다.
단계 17.5
에 더합니다.
단계 17.6
을 곱합니다.
단계 17.7
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 17.7.1
각이 보다 크거나 같고 보다 작을 때까지 한 바퀴인 를 여러 번 뺍니다.
단계 17.7.2
의 정확한 값은 입니다.
단계 17.8
로 나눕니다.
단계 17.9
을 곱합니다.
단계 17.10
에 더합니다.
단계 17.11
을 묶습니다.
단계 17.12
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 17.13
을 묶습니다.
단계 17.14
공통분모를 가진 분자끼리 묶습니다.
단계 17.15
에 더합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 17.15.1
을 다시 정렬합니다.
단계 17.15.2
에 더합니다.
단계 18
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: