미적분 예제

적분 계산하기 x 에 대한 1/(x(1+x^2)) 의 적분
단계 1
부분 분수 분해를 사용하여 분수를 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
분수를 분해하고 전체 식에 공통분모를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
분모의 각 인수에 대해 분모에는 인수를, 분자에는 미지수를 갖는 새로운 분수를 만듭니다. 인수가 2차이므로 분자에 개의 항이 필요합니다. 분자에 필요한 항의 개수는 항상 분모에 있는 인수의 차수와 동일합니다.
단계 1.1.2
방정식의 각 분수에 수식의 분모를 곱합니다. 이 경우 분모는 입니다.
단계 1.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
공약수로 약분합니다.
단계 1.1.3.2
수식을 다시 씁니다.
단계 1.1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.4.1
공약수로 약분합니다.
단계 1.1.4.2
수식을 다시 씁니다.
단계 1.1.5
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.5.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.5.1.1
공약수로 약분합니다.
단계 1.1.5.1.2
로 나눕니다.
단계 1.1.5.2
분배 법칙을 적용합니다.
단계 1.1.5.3
을 곱합니다.
단계 1.1.5.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.5.4.1
공약수로 약분합니다.
단계 1.1.5.4.2
로 나눕니다.
단계 1.1.5.5
분배 법칙을 적용합니다.
단계 1.1.5.6
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.5.6.1
를 옮깁니다.
단계 1.1.5.6.2
을 곱합니다.
단계 1.1.6
를 옮깁니다.
단계 1.2
부분분수 변수에 대한 방정식을 세우고 이를 사용하여 연립방정식을 세웁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
방정식의 각 변의 의 계수가 같도록 하여 부분분수 변수에 대한 방정식을 세웁니다. 두 방정식이 동일하려면 방정식의 각 변의 대응하는 계수가 서로 같아야 합니다.
단계 1.2.2
방정식의 각 변의 의 계수가 같도록 하여 부분분수 변수에 대한 방정식을 세웁니다. 두 방정식이 동일하려면 방정식의 각 변의 대응하는 계수가 서로 같아야 합니다.
단계 1.2.3
를 포함하지 않는 항의 계수가 같도록 하여 부분분수 변수에 대한 방정식을 세웁니다. 두 방정식이 동일하려면 방정식의 각 변의 대응하는 계수가 서로 같아야 합니다.
단계 1.2.4
부분분수의 계수를 구하는 연립방정식을 세웁니다.
단계 1.3
연립방정식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
로 방정식을 다시 씁니다.
단계 1.3.2
로 방정식을 다시 씁니다.
단계 1.3.3
각 방정식에서 를 모두 로 바꿉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.3.1
를 모두 로 바꿉니다.
단계 1.3.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.3.2.1
괄호를 제거합니다.
단계 1.3.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.4.1
로 방정식을 다시 씁니다.
단계 1.3.4.2
방정식의 양변에서 를 뺍니다.
단계 1.3.5
연립방정식을 풉니다.
단계 1.3.6
모든 해를 나열합니다.
단계 1.4
, , 에 대해 구한 값을 의 각 부분 분수 계수에 대입합니다.
단계 1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
괄호를 제거합니다.
단계 1.5.2
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.2.1
로 바꿔 씁니다.
단계 1.5.2.2
에 더합니다.
단계 1.5.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 2
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 3
에 대해 적분하면 입니다.
단계 4
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 5
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.1
를 미분합니다.
단계 5.1.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 5.1.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 5.1.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.5
에 더합니다.
단계 5.2
를 사용해 문제를 바꿔 씁니다.
단계 6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
을 곱합니다.
단계 6.2
의 왼쪽으로 이동하기
단계 7
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 8
에 대해 적분하면 입니다.
단계 9
간단히 합니다.
단계 10
를 모두 로 바꿉니다.