미적분 예제

평균값 정리를 만족하는 점 찾기 f(x)=x^4-3x^3+4 , [1,2]
,
단계 1
만약 구간에서 연속이며 에서 미분가능하면, 가 되도록 하는 최소 하나의 실수 구간에 존재합니다. 평균값 정리는 에서 곡선의 접선의 기울기와 점을 지나는 직선의 기울기 사이의 관계를 나타냅니다.
에서 연속인 경우
그리고 구간에서 미분가능한 경우,
그러면 에 적어도 하나의 점 이 존재합니다: .
단계 2
가 연속인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
구간 표기:
조건제시법:
단계 2.2
에서 연속입니다.
연속 함수입니다.
연속 함수입니다.
단계 3
도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.1.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.1.2.3
을 곱합니다.
단계 3.1.3
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.3.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.1.3.2
에 더합니다.
단계 3.2
에 대한 1차 도함수는 입니다.
단계 4
도함수가 에서 연속인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
구간 표기:
조건제시법:
단계 4.2
에서 연속입니다.
연속 함수입니다.
연속 함수입니다.
단계 5
도함수가 에서 연속이므로 이 함수는 에서 미분가능합니다.
이 함수는 미분가능합니다.
단계 6
는 중간값 정리의 두 가지 조건을 만족합니다. 에서 연속이고 에서 미분가능합니다.
에서 연속이며 에서 미분가능합니다.
단계 7
구간의 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
수식에서 변수 을 대입합니다.
단계 7.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1.1
1의 모든 거듭제곱은 1입니다.
단계 7.2.1.2
1의 모든 거듭제곱은 1입니다.
단계 7.2.1.3
을 곱합니다.
단계 7.2.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.2.1
에서 을 뺍니다.
단계 7.2.2.2
에 더합니다.
단계 7.2.3
최종 답은 입니다.
단계 8
구간의 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
수식에서 변수 을 대입합니다.
단계 8.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.1
승 합니다.
단계 8.2.1.2
승 합니다.
단계 8.2.1.3
을 곱합니다.
단계 8.2.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.2.1
에서 을 뺍니다.
단계 8.2.2.2
에 더합니다.
단계 8.2.3
최종 답은 입니다.
단계 9
에 대해 풉니다. .
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1.1.1
을 곱합니다.
단계 9.1.1.2
에서 을 뺍니다.
단계 9.1.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1.2.1
을 곱합니다.
단계 9.1.2.2
에서 을 뺍니다.
단계 9.1.3
로 나눕니다.
단계 9.2
방정식의 각 변을 그립니다. 해는 교점의 x값입니다.
단계 10
에서 끝점 을 지나는 직선에 평행한 접선이 존재합니다.
에서 끝점 을 지나는 직선에 평행한 접선이 존재합니다.
단계 11
에서 끝점 을 지나는 직선에 평행한 접선이 존재합니다.
에서 끝점 을 지나는 직선에 평행한 접선이 존재합니다.
단계 12
에서 끝점 을 지나는 직선에 평행한 접선이 존재합니다.
에서 끝점 을 지나는 직선에 평행한 접선이 존재합니다.
단계 13