미적분 예제

변곡점 구하기 x^2-4x+3
단계 1
을 함수로 씁니다.
단계 2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.1.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.1.2.3
을 곱합니다.
단계 2.1.3
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.3.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.1.3.2
에 더합니다.
단계 2.2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.2.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.2.3
을 곱합니다.
단계 2.2.3
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.2.3.2
에 더합니다.
단계 2.3
에 대한 2차 도함수는 입니다.
단계 3
2차 도함수를 으로 두고 식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
2차 도함수를 과(와) 같게 합니다.
단계 3.2
이므로, 해가 존재하지 않습니다.
해 없음
해 없음
단계 4
2차 미분값을 이 되게 할 수 있는 값이 없습니다.
변곡점 없음