미적분 예제

변곡점 구하기 f(x)=x^(5/3)+3
단계 1
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.1.2.3
을 묶습니다.
단계 1.1.2.4
공통분모를 가진 분자끼리 묶습니다.
단계 1.1.2.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.5.1
을 곱합니다.
단계 1.1.2.5.2
에서 을 뺍니다.
단계 1.1.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.4.1
에 더합니다.
단계 1.1.4.2
을 묶습니다.
단계 1.2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.2.4
을 묶습니다.
단계 1.2.5
공통분모를 가진 분자끼리 묶습니다.
단계 1.2.6
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.1
을 곱합니다.
단계 1.2.6.2
에서 을 뺍니다.
단계 1.2.7
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.2.8
을 묶습니다.
단계 1.2.9
을 곱합니다.
단계 1.2.10
곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.10.1
을 곱합니다.
단계 1.2.10.2
을 곱합니다.
단계 1.2.10.3
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 1.3
에 대한 2차 도함수는 입니다.
단계 2
2차 도함수를 으로 두고 식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
2차 도함수를 과(와) 같게 합니다.
단계 2.2
분자가 0과 같게 만듭니다.
단계 2.3
이므로, 해가 존재하지 않습니다.
해 없음
해 없음
단계 3
2차 미분값을 이 되게 할 수 있는 값이 없습니다.
변곡점 없음