미적분 예제

임계점 구하기 y=sin(x)
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
에 대해 미분하면입니다.
단계 1.2
에 대한 1차 도함수는 입니다.
단계 2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
의 정확한 값은 입니다.
단계 2.4
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 2.5
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.5.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.1
을 묶습니다.
단계 2.5.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 2.5.3
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.3.1
을 곱합니다.
단계 2.5.3.2
에서 을 뺍니다.
단계 2.6
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.6.2
주기 공식에서 을 대입합니다.
단계 2.6.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.6.4
로 나눕니다.
단계 2.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 2.8
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
를 대입합니다.
단계 4.1.2
의 정확한 값은 입니다.
단계 4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
를 대입합니다.
단계 4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제4사분면에서 사인이 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 4.2.2.2
의 정확한 값은 입니다.
단계 4.2.2.3
을 곱합니다.
단계 4.3
모든 점을 나열합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 5