미적분 예제

Find Where Increasing/Decreasing Using Derivatives f(x)=2x^3-3x^2-12x+18
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.3
을 곱합니다.
단계 1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.3.3
을 곱합니다.
단계 1.1.4
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4.3
을 곱합니다.
단계 1.1.5
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.5.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.5.2
에 더합니다.
단계 1.2
에 대한 1차 도함수는 입니다.
단계 2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
에서 를 인수분해합니다.
단계 2.2.1.2
에서 를 인수분해합니다.
단계 2.2.1.3
에서 를 인수분해합니다.
단계 2.2.1.4
에서 를 인수분해합니다.
단계 2.2.1.5
에서 를 인수분해합니다.
단계 2.2.2
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 2.2.2.1.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 2.2.2.2
불필요한 괄호를 제거합니다.
단계 2.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
와 같다고 둡니다.
단계 2.4.2
방정식의 양변에 를 더합니다.
단계 2.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
와 같다고 둡니다.
단계 2.5.2
방정식의 양변에서 를 뺍니다.
단계 2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3
미분값을 으로 만드는 값들은 입니다.
단계 4
미분값이 또는 정의되지 않게 하는 값 주변 구간으로 을 나눕니다.
단계 5
구간에 속한 값을 도함수에 대입하여 함수가 증가하는지 또는 감소하는지를 판단합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
수식에서 변수 을 대입합니다.
단계 5.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1.1
승 합니다.
단계 5.2.1.2
을 곱합니다.
단계 5.2.1.3
을 곱합니다.
단계 5.2.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.2.1
에 더합니다.
단계 5.2.2.2
에서 을 뺍니다.
단계 5.2.3
최종 답은 입니다.
단계 5.3
에서의 도함수는 입니다. 미분값이 양수이므로 함수는 구간에서 증가합니다.
이므로 에서 증가함
이므로 에서 증가함
단계 6
구간에 속한 값을 도함수에 대입하여 함수가 증가하는지 또는 감소하는지를 판단합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
수식에서 변수 을 대입합니다.
단계 6.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.1
에 곱의 미분 법칙을 적용합니다.
단계 6.2.1.2
1의 모든 거듭제곱은 1입니다.
단계 6.2.1.3
승 합니다.
단계 6.2.1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.4.1
에서 를 인수분해합니다.
단계 6.2.1.4.2
에서 를 인수분해합니다.
단계 6.2.1.4.3
공약수로 약분합니다.
단계 6.2.1.4.4
수식을 다시 씁니다.
단계 6.2.1.5
을 묶습니다.
단계 6.2.1.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.6.1
에서 를 인수분해합니다.
단계 6.2.1.6.2
공약수로 약분합니다.
단계 6.2.1.6.3
수식을 다시 씁니다.
단계 6.2.2
공통분모를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1
를 분모가 인 분수로 표현합니다.
단계 6.2.2.2
을 곱합니다.
단계 6.2.2.3
을 곱합니다.
단계 6.2.2.4
를 분모가 인 분수로 표현합니다.
단계 6.2.2.5
을 곱합니다.
단계 6.2.2.6
을 곱합니다.
단계 6.2.3
공통분모를 가진 분자끼리 묶습니다.
단계 6.2.4
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.4.1
을 곱합니다.
단계 6.2.4.2
을 곱합니다.
단계 6.2.5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.5.1
에서 을 뺍니다.
단계 6.2.5.2
에서 을 뺍니다.
단계 6.2.5.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 6.2.6
최종 답은 입니다.
단계 6.3
에서의 도함수는 입니다. 미분값이 음수이므로 함수는 구간에서 감소합니다.
이므로 에서 감소함
이므로 에서 감소함
단계 7
구간에 속한 값을 도함수에 대입하여 함수가 증가하는지 또는 감소하는지를 판단합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
수식에서 변수 을 대입합니다.
단계 7.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1.1
승 합니다.
단계 7.2.1.2
을 곱합니다.
단계 7.2.1.3
을 곱합니다.
단계 7.2.2
숫자를 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.2.1
에서 을 뺍니다.
단계 7.2.2.2
에서 을 뺍니다.
단계 7.2.3
최종 답은 입니다.
단계 7.3
에서의 도함수는 입니다. 미분값이 양수이므로 함수는 구간에서 증가합니다.
이므로 에서 증가함
이므로 에서 증가함
단계 8
함수가 증가하고 감소하는 구간을 구합니다.
증가:
다음 구간에서 감소:
단계 9