미적분 예제

주어진 구간의 절대 최대값 및 최소값 구하기 f(x)=(x^2-36)/(x^2+36) , [-36,36]
,
단계 1
임계점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 1.1.1.2
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.2.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.1.2.4
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.4.1
에 더합니다.
단계 1.1.1.2.4.2
의 왼쪽으로 이동하기
단계 1.1.1.2.5
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.2.6
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.2.7
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.1.2.8
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.8.1
에 더합니다.
단계 1.1.1.2.8.2
을 곱합니다.
단계 1.1.1.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.1
분배 법칙을 적용합니다.
단계 1.1.1.3.2
분배 법칙을 적용합니다.
단계 1.1.1.3.3
분배 법칙을 적용합니다.
단계 1.1.1.3.4
분배 법칙을 적용합니다.
단계 1.1.1.3.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.5.1
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.5.1.1
에서 을 뺍니다.
단계 1.1.1.3.5.1.2
에 더합니다.
단계 1.1.1.3.5.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.5.2.1
을 곱합니다.
단계 1.1.1.3.5.2.2
을 곱합니다.
단계 1.1.1.3.5.3
에 더합니다.
단계 1.1.2
에 대한 1차 도함수는 입니다.
단계 1.2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
1차 도함수가 이 되게 합니다.
단계 1.2.2
분자가 0과 같게 만듭니다.
단계 1.2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.1
의 각 항을 로 나눕니다.
단계 1.2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1.1
공약수로 약분합니다.
단계 1.2.3.2.1.2
로 나눕니다.
단계 1.2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.3.1
로 나눕니다.
단계 1.3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 1.4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
를 대입합니다.
단계 1.4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 1.4.1.2.1.2
에서 을 뺍니다.
단계 1.4.1.2.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.2.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 1.4.1.2.2.2
에 더합니다.
단계 1.4.1.2.3
로 나눕니다.
단계 1.4.2
모든 점을 나열합니다.
단계 2
포함된 끝점에서 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
를 대입합니다.
단계 2.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1
공약수를 소거하여 수식을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1.1.1
에서 를 인수분해합니다.
단계 2.1.2.1.1.2
로 바꿔 씁니다.
단계 2.1.2.1.1.3
에서 를 인수분해합니다.
단계 2.1.2.1.1.4
에서 를 인수분해합니다.
단계 2.1.2.1.1.5
에서 를 인수분해합니다.
단계 2.1.2.1.1.6
에서 를 인수분해합니다.
단계 2.1.2.1.1.7
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1.1.7.1
에서 를 인수분해합니다.
단계 2.1.2.1.1.7.2
공약수로 약분합니다.
단계 2.1.2.1.1.7.3
수식을 다시 씁니다.
단계 2.1.2.1.2
에 더합니다.
단계 2.1.2.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.2.1
을 곱합니다.
단계 2.1.2.2.2
에 더합니다.
단계 2.1.2.3
공약수를 소거하여 수식을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.3.1
을 곱합니다.
단계 2.1.2.3.2
두 음수를 나누면 양수가 나옵니다.
단계 2.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
를 대입합니다.
단계 2.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1
에서 를 인수분해합니다.
단계 2.2.2.1.2
로 바꿔 씁니다.
단계 2.2.2.1.3
에서 를 인수분해합니다.
단계 2.2.2.1.4
에서 를 인수분해합니다.
단계 2.2.2.1.5
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.5.1
에서 를 인수분해합니다.
단계 2.2.2.1.5.2
에서 를 인수분해합니다.
단계 2.2.2.1.5.3
에서 를 인수분해합니다.
단계 2.2.2.1.5.4
공약수로 약분합니다.
단계 2.2.2.1.5.5
수식을 다시 씁니다.
단계 2.2.2.2
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.2.1
을 곱합니다.
단계 2.2.2.2.2
에 더합니다.
단계 2.2.2.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.3.1
에 더합니다.
단계 2.2.2.3.2
을 곱합니다.
단계 2.3
모든 점을 나열합니다.
단계 3
주어진 구간에서 절대 최댓값과 최솟값을 결정하기 위하여 각 값에 대해 구한 값을 비교합니다. 가장 큰 값에서 최댓값이 발생하고 가장 작은 값에서 최솟값이 발생합니다.
절댓값 최대:
절댓값 최소:
단계 4