문제를 입력하십시오...
미적분 예제
단계 1
모든 에 대하여 수직점근선은 가 정수일 때 에서 나타납니다. 의 수직점근선을 구하려면 의 기본 주기인 를 이용합니다. 에서 탄젠트 함수 안의 가 이 되도록 하여 의 수직점근선의 위치를 구합니다.
단계 2
단계 2.1
의 각 항을 로 나눕니다.
단계 2.2
좌변을 간단히 합니다.
단계 2.2.1
의 공약수로 약분합니다.
단계 2.2.1.1
공약수로 약분합니다.
단계 2.2.1.2
을 로 나눕니다.
단계 2.3
우변을 간단히 합니다.
단계 2.3.1
분자에 분모의 역수를 곱합니다.
단계 2.3.2
을 곱합니다.
단계 2.3.2.1
에 을 곱합니다.
단계 2.3.2.2
에 을 곱합니다.
단계 3
탄젠트 함수 안의 를 이 되도록 합니다.
단계 4
단계 4.1
의 각 항을 로 나눕니다.
단계 4.2
좌변을 간단히 합니다.
단계 4.2.1
의 공약수로 약분합니다.
단계 4.2.1.1
공약수로 약분합니다.
단계 4.2.1.2
을 로 나눕니다.
단계 4.3
우변을 간단히 합니다.
단계 4.3.1
분자에 분모의 역수를 곱합니다.
단계 4.3.2
을 곱합니다.
단계 4.3.2.1
에 을 곱합니다.
단계 4.3.2.2
에 을 곱합니다.
단계 5
의 기본 주기 구간은 이며 와 는 수직점근선입니다.
단계 6
절댓값은 숫자와 0 사이의 거리를 말합니다. 과 사이의 거리는 입니다.
단계 7
의 수직점근선은 이 정수일 때 , 과 매 마다 존재합니다.
단계 8
탄젠트는 수직점근선만을 가집니다.
수평점근선 없음
사선점근선 없음
수직점근선: 이 정수일 때
단계 9