미적분 예제

Trouver la dérivée - d/d@VAR f(x)=(2x-9)^4(x^2+x+1)^5
단계 1
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
를 모두 로 바꿉니다.
단계 3
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
의 왼쪽으로 이동하기
단계 3.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.5
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.6
에 더합니다.
단계 4
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.3
를 모두 로 바꿉니다.
단계 5
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
의 왼쪽으로 이동하기
단계 5.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 5.3
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.5
을 곱합니다.
단계 5.6
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 5.7
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.7.1
에 더합니다.
단계 5.7.2
을 곱합니다.
단계 6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
에서 를 인수분해합니다.
단계 6.1.2
에서 를 인수분해합니다.
단계 6.1.3
에서 를 인수분해합니다.
단계 6.2
인수를 다시 정렬합니다.