미적분 예제

극대값 및 극소값 구하기 y=8x^3-x^4+x^3(8-x)
단계 1
을 함수로 씁니다.
단계 2
함수의 1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.3
을 곱합니다.
단계 2.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.3
을 곱합니다.
단계 2.4
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 2.4.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.4.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.4.4
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.4.5
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.4.6
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.4.7
을 곱합니다.
단계 2.4.8
에서 을 뺍니다.
단계 2.4.9
의 왼쪽으로 이동하기
단계 2.4.10
로 바꿔 씁니다.
단계 2.4.11
의 왼쪽으로 이동하기
단계 2.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
분배 법칙을 적용합니다.
단계 2.5.2
분배 법칙을 적용합니다.
단계 2.5.3
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.3.1
을 곱합니다.
단계 2.5.3.2
을 곱합니다.
단계 2.5.3.3
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.3.3.1
를 옮깁니다.
단계 2.5.3.3.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.3.3.2.1
승 합니다.
단계 2.5.3.3.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.5.3.3.3
에 더합니다.
단계 2.5.3.4
에서 을 뺍니다.
단계 2.5.3.5
에서 을 뺍니다.
단계 2.5.3.6
에 더합니다.
단계 3
함수의 2차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.3
을 곱합니다.
단계 3.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3.3
을 곱합니다.
단계 4
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 5
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 5.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.2.3
을 곱합니다.
단계 5.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.3.3
을 곱합니다.
단계 5.1.4
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.4.1
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 5.1.4.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 5.1.4.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 5.1.4.4
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.1.4.5
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.4.6
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.4.7
을 곱합니다.
단계 5.1.4.8
에서 을 뺍니다.
단계 5.1.4.9
의 왼쪽으로 이동하기
단계 5.1.4.10
로 바꿔 씁니다.
단계 5.1.4.11
의 왼쪽으로 이동하기
단계 5.1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.5.1
분배 법칙을 적용합니다.
단계 5.1.5.2
분배 법칙을 적용합니다.
단계 5.1.5.3
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.5.3.1
을 곱합니다.
단계 5.1.5.3.2
을 곱합니다.
단계 5.1.5.3.3
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.5.3.3.1
를 옮깁니다.
단계 5.1.5.3.3.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.5.3.3.2.1
승 합니다.
단계 5.1.5.3.3.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.1.5.3.3.3
에 더합니다.
단계 5.1.5.3.4
에서 을 뺍니다.
단계 5.1.5.3.5
에서 을 뺍니다.
단계 5.1.5.3.6
에 더합니다.
단계 5.2
에 대한 1차 도함수는 입니다.
단계 6
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
1차 도함수가 이 되게 합니다.
단계 6.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
에서 를 인수분해합니다.
단계 6.2.2
에서 를 인수분해합니다.
단계 6.2.3
에서 를 인수분해합니다.
단계 6.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 6.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.1
와 같다고 둡니다.
단계 6.4.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.2.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 6.4.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.4.2.2.1
로 바꿔 씁니다.
단계 6.4.2.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 6.4.2.2.3
플러스 마이너스 입니다.
단계 6.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.5.1
와 같다고 둡니다.
단계 6.5.2
방정식의 양변에 를 더합니다.
단계 6.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 7
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 8
계산할 임계점.
단계 9
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 10
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 10.1.2
을 곱합니다.
단계 10.1.3
을 곱합니다.
단계 10.2
에 더합니다.
단계 11
는 점이 한 개 이상이거나 2차 도함수가 정의되어 있지 않으므로 1차 도함수 판정을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
1차 미분값이 또는 정의되지 않게 하는 값 주변 구간으로 을 나눕니다.
단계 11.2
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
수식에서 변수 을 대입합니다.
단계 11.2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.2.1.1
승 합니다.
단계 11.2.2.1.2
을 곱합니다.
단계 11.2.2.1.3
승 합니다.
단계 11.2.2.1.4
을 곱합니다.
단계 11.2.2.2
에 더합니다.
단계 11.2.2.3
최종 답은 입니다.
단계 11.3
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.3.1
수식에서 변수 을 대입합니다.
단계 11.3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.3.2.1.1
승 합니다.
단계 11.3.2.1.2
을 곱합니다.
단계 11.3.2.1.3
승 합니다.
단계 11.3.2.1.4
을 곱합니다.
단계 11.3.2.2
에 더합니다.
단계 11.3.2.3
최종 답은 입니다.
단계 11.4
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.4.1
수식에서 변수 을 대입합니다.
단계 11.4.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.4.2.1.1
승 합니다.
단계 11.4.2.1.2
을 곱합니다.
단계 11.4.2.1.3
승 합니다.
단계 11.4.2.1.4
을 곱합니다.
단계 11.4.2.2
에 더합니다.
단계 11.4.2.3
최종 답은 입니다.
단계 11.5
1차 도함수의 부호가 근처에서 변하지 않았으므로 극솟값도 극댓값도 아닙니다.
극댓값 또는 극솟값이 아님
단계 11.6
1차 도함수의 부호가 근처에서 양수에서 음수로 변경되었으므로 은 극댓값입니다.
은 극대값입니다
은 극대값입니다
단계 12