문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
, 일 때 는 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 1.2
=일 때 은 이라는 지수 법칙을 이용하여 미분합니다.
단계 1.3
미분합니다.
단계 1.3.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.3
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.3.4
식을 간단히 합니다.
단계 1.3.4.1
를 에 더합니다.
단계 1.3.4.2
에 을 곱합니다.
단계 1.4
간단히 합니다.
단계 1.4.1
분배 법칙을 적용합니다.
단계 1.4.2
항을 묶습니다.
단계 1.4.2.1
을 로 바꿔 씁니다.
단계 1.4.2.2
를 에 더합니다.
단계 1.4.2.3
를 에 더합니다.
단계 1.4.3
인수를 다시 정렬합니다.
단계 1.4.4
에서 인수를 다시 정렬합니다.
단계 2
단계 2.1
, 일 때 는 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 2.2
=일 때 은 이라는 지수 법칙을 이용하여 미분합니다.
단계 2.3
멱의 법칙을 이용하여 미분합니다.
단계 2.3.1
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.2
에 을 곱합니다.
단계 3
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 4
단계 4.1
1차 도함수를 구합니다.
단계 4.1.1
, 일 때 는 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 4.1.2
=일 때 은 이라는 지수 법칙을 이용하여 미분합니다.
단계 4.1.3
미분합니다.
단계 4.1.3.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 4.1.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.1.3.3
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 4.1.3.4
식을 간단히 합니다.
단계 4.1.3.4.1
를 에 더합니다.
단계 4.1.3.4.2
에 을 곱합니다.
단계 4.1.4
간단히 합니다.
단계 4.1.4.1
분배 법칙을 적용합니다.
단계 4.1.4.2
항을 묶습니다.
단계 4.1.4.2.1
을 로 바꿔 씁니다.
단계 4.1.4.2.2
를 에 더합니다.
단계 4.1.4.2.3
를 에 더합니다.
단계 4.1.4.3
인수를 다시 정렬합니다.
단계 4.1.4.4
에서 인수를 다시 정렬합니다.
단계 4.2
의 에 대한 1차 도함수는 입니다.
단계 5
단계 5.1
1차 도함수가 이 되게 합니다.
단계 5.2
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 5.3
를 와 같다고 둡니다.
단계 5.4
이 가 되도록 하고 에 대해 식을 풉니다.
단계 5.4.1
를 와 같다고 둡니다.
단계 5.4.2
을 에 대해 풉니다.
단계 5.4.2.1
지수에서 변수를 제거하기 위하여 방정식의 양변에 자연로그를 취합니다.
단계 5.4.2.2
이(가) 정의되지 않으므로 방정식을 풀 수 없습니다.
정의되지 않음
단계 5.4.2.3
에 대한 해가 없습니다.
해 없음
해 없음
해 없음
단계 5.5
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 6
단계 6.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 7
계산할 임계점.
단계 8
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 9
단계 9.1
각 항을 간단히 합니다.
단계 9.1.1
모든 수의 승은 입니다.
단계 9.1.2
에 을 곱합니다.
단계 9.1.3
모든 수의 승은 입니다.
단계 9.2
를 에 더합니다.
단계 10
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
단계 11
단계 11.1
수식에서 변수 에 을 대입합니다.
단계 11.2
결과를 간단히 합니다.
단계 11.2.1
에서 을 뺍니다.
단계 11.2.2
모든 수의 승은 입니다.
단계 11.2.3
에 을 곱합니다.
단계 11.2.4
최종 답은 입니다.
단계 12
에 대한 극값입니다.
은 극솟값임
단계 13