미적분 예제

임계점 구하기 f(x) = square root of x^2+8
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.1.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.3
를 모두 로 바꿉니다.
단계 1.1.3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.1.4
을 묶습니다.
단계 1.1.5
공통분모를 가진 분자끼리 묶습니다.
단계 1.1.6
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.6.1
을 곱합니다.
단계 1.1.6.2
에서 을 뺍니다.
단계 1.1.7
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.7.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.1.7.2
을 묶습니다.
단계 1.1.7.3
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 1.1.8
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.9
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.10
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.11
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.11.1
에 더합니다.
단계 1.1.11.2
을 묶습니다.
단계 1.1.11.3
을 묶습니다.
단계 1.1.11.4
공약수로 약분합니다.
단계 1.1.11.5
수식을 다시 씁니다.
단계 1.2
에 대한 1차 도함수는 입니다.
단계 2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
분자가 0과 같게 만듭니다.
단계 3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
를 대입합니다.
단계 4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.1.2.2
에 더합니다.
단계 4.1.2.3
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.3.1
에서 를 인수분해합니다.
단계 4.1.2.3.2
로 바꿔 씁니다.
단계 4.1.2.4
근호 안의 항을 밖으로 빼냅니다.
단계 4.2
모든 점을 나열합니다.
단계 5