문제를 입력하십시오...
미적분 예제
,
단계 1
단계 1.1
방정식의 양변에 를 더합니다.
단계 1.2
각 방정식에서 를 모두 로 바꿉니다.
단계 1.2.1
의 를 모두 로 바꿉니다.
단계 1.2.2
좌변을 간단히 합니다.
단계 1.2.2.1
을 간단히 합니다.
단계 1.2.2.1.1
각 항을 간단히 합니다.
단계 1.2.2.1.1.1
을 로 바꿔 씁니다.
단계 1.2.2.1.1.2
FOIL 계산법을 이용하여 를 전개합니다.
단계 1.2.2.1.1.2.1
분배 법칙을 적용합니다.
단계 1.2.2.1.1.2.2
분배 법칙을 적용합니다.
단계 1.2.2.1.1.2.3
분배 법칙을 적용합니다.
단계 1.2.2.1.1.3
동류항끼리 묶고 식을 간단히 합니다.
단계 1.2.2.1.1.3.1
각 항을 간단히 합니다.
단계 1.2.2.1.1.3.1.1
에 을 곱합니다.
단계 1.2.2.1.1.3.1.2
에 을 곱합니다.
단계 1.2.2.1.1.3.1.3
에 을 곱합니다.
단계 1.2.2.1.1.3.1.4
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 1.2.2.1.1.3.1.5
지수를 더하여 에 을 곱합니다.
단계 1.2.2.1.1.3.1.5.1
를 옮깁니다.
단계 1.2.2.1.1.3.1.5.2
에 을 곱합니다.
단계 1.2.2.1.1.3.1.6
에 을 곱합니다.
단계 1.2.2.1.1.3.2
에서 을 뺍니다.
단계 1.2.2.1.2
를 에 더합니다.
단계 1.3
의 에 대해 풉니다.
단계 1.3.1
방정식의 양변에서 를 뺍니다.
단계 1.3.2
의 반대 항을 묶습니다.
단계 1.3.2.1
에서 을 뺍니다.
단계 1.3.2.2
를 에 더합니다.
단계 1.3.3
에서 를 인수분해합니다.
단계 1.3.3.1
와 을 다시 정렬합니다.
단계 1.3.3.2
에서 를 인수분해합니다.
단계 1.3.3.3
에서 를 인수분해합니다.
단계 1.3.3.4
에서 를 인수분해합니다.
단계 1.3.4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 1.3.5
를 와 같다고 둡니다.
단계 1.3.6
이 가 되도록 하고 에 대해 식을 풉니다.
단계 1.3.6.1
를 와 같다고 둡니다.
단계 1.3.6.2
을 에 대해 풉니다.
단계 1.3.6.2.1
방정식의 양변에서 를 뺍니다.
단계 1.3.6.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 1.3.6.2.2.1
의 각 항을 로 나눕니다.
단계 1.3.6.2.2.2
좌변을 간단히 합니다.
단계 1.3.6.2.2.2.1
두 음수를 나누면 양수가 나옵니다.
단계 1.3.6.2.2.2.2
을 로 나눕니다.
단계 1.3.6.2.2.3
우변을 간단히 합니다.
단계 1.3.6.2.2.3.1
을 로 나눕니다.
단계 1.3.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 1.4
각 방정식에서 를 모두 로 바꿉니다.
단계 1.4.1
의 를 모두 로 바꿉니다.
단계 1.4.2
우변을 간단히 합니다.
단계 1.4.2.1
을 간단히 합니다.
단계 1.4.2.1.1
에 을 곱합니다.
단계 1.4.2.1.2
를 에 더합니다.
단계 1.5
각 방정식에서 를 모두 로 바꿉니다.
단계 1.5.1
의 를 모두 로 바꿉니다.
단계 1.5.2
우변을 간단히 합니다.
단계 1.5.2.1
을 간단히 합니다.
단계 1.5.2.1.1
에 을 곱합니다.
단계 1.5.2.1.2
를 에 더합니다.
단계 1.6
연립방정식의 해는 모든 유효한 해의 순서쌍으로 이루어진 전체 집합입니다.
단계 2
방정식의 양변에 를 더합니다.
단계 3
단계 3.1
방정식의 양변에서 를 뺍니다.
단계 3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 3.3
을 간단히 합니다.
단계 3.3.1
을 로 바꿔 씁니다.
단계 3.3.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 3.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 3.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 3.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 3.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 4
두 곡선 사이의 영역의 넓이는 각 영역의 상위 곡선의 적분값에서 하위 곡선의 적분값을 뺀 값으로 정의됩니다. 영역은 두 곡선의 교점에 의해 정해집니다. 이는 대수적으로 또는 그래프로 정해집니다.
단계 5
단계 5.1
적분을 묶어 하나의 적분으로 만듭니다.
단계 5.2
각 항을 간단히 합니다.
단계 5.2.1
분배 법칙을 적용합니다.
단계 5.2.2
에 을 곱합니다.
단계 5.2.3
에 을 곱합니다.
단계 5.3
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 5.4
제곱식을 완성합니다.
단계 5.4.1
식을 간단히 합니다.
단계 5.4.1.1
FOIL 계산법을 이용하여 를 전개합니다.
단계 5.4.1.1.1
분배 법칙을 적용합니다.
단계 5.4.1.1.2
분배 법칙을 적용합니다.
단계 5.4.1.1.3
분배 법칙을 적용합니다.
단계 5.4.1.2
동류항끼리 묶고 식을 간단히 합니다.
단계 5.4.1.2.1
각 항을 간단히 합니다.
단계 5.4.1.2.1.1
에 을 곱합니다.
단계 5.4.1.2.1.2
에 을 곱합니다.
단계 5.4.1.2.1.3
의 왼쪽으로 이동하기
단계 5.4.1.2.1.4
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 5.4.1.2.1.5
지수를 더하여 에 을 곱합니다.
단계 5.4.1.2.1.5.1
를 옮깁니다.
단계 5.4.1.2.1.5.2
에 을 곱합니다.
단계 5.4.1.2.2
를 에 더합니다.
단계 5.4.1.2.3
를 에 더합니다.
단계 5.4.1.3
와 을 다시 정렬합니다.
단계 5.4.2
형태를 이용해 , , 값을 구합니다.
단계 5.4.3
포물선 방정식의 꼭짓점 형태를 이용합니다.
단계 5.4.4
공식을 이용하여 값을 구합니다.
단계 5.4.4.1
과 값을 공식 에 대입합니다.
단계 5.4.4.2
우변을 간단히 합니다.
단계 5.4.4.2.1
및 의 공약수로 약분합니다.
단계 5.4.4.2.1.1
에서 를 인수분해합니다.
단계 5.4.4.2.1.2
의 분모에서 -1을 옮깁니다.
단계 5.4.4.2.2
을 로 바꿔 씁니다.
단계 5.4.4.2.3
에 을 곱합니다.
단계 5.4.5
공식을 이용하여 값을 구합니다.
단계 5.4.5.1
, , 값을 공식 에 대입합니다.
단계 5.4.5.2
우변을 간단히 합니다.
단계 5.4.5.2.1
각 항을 간단히 합니다.
단계 5.4.5.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 5.4.5.2.1.2
에 을 곱합니다.
단계 5.4.5.2.1.3
을 로 나눕니다.
단계 5.4.5.2.1.4
에 을 곱합니다.
단계 5.4.5.2.2
를 에 더합니다.
단계 5.4.6
, , 값을 꼭짓점 형태 에 대입합니다.
단계 5.5
먼저 로 정의합니다. 그러면 가 됩니다. 이 식을 와 를 이용하여 다시 씁니다.
단계 5.5.1
로 둡니다. 를 구합니다.
단계 5.5.1.1
를 미분합니다.
단계 5.5.1.2
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 5.5.1.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.5.1.4
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 5.5.1.5
를 에 더합니다.
단계 5.5.2
의 에 극한의 하한을 대입합니다.
단계 5.5.3
를 에 더합니다.
단계 5.5.4
의 에 극한의 상한을 대입합니다.
단계 5.5.5
를 에 더합니다.
단계 5.5.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 5.5.7
와 , 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 5.6
일 때 라고 하면 입니다. 이므로 는 양수입니다.
단계 5.7
항을 간단히 합니다.
단계 5.7.1
을 간단히 합니다.
단계 5.7.1.1
각 항을 간단히 합니다.
단계 5.7.1.1.1
에 곱의 미분 법칙을 적용합니다.
단계 5.7.1.1.2
를 승 합니다.
단계 5.7.1.1.3
에 을 곱합니다.
단계 5.7.1.2
와 을 다시 정렬합니다.
단계 5.7.1.3
에서 를 인수분해합니다.
단계 5.7.1.4
에서 를 인수분해합니다.
단계 5.7.1.5
에서 를 인수분해합니다.
단계 5.7.1.6
피타고라스의 정리를 적용합니다.
단계 5.7.1.7
을 로 바꿔 씁니다.
단계 5.7.1.8
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 5.7.2
간단히 합니다.
단계 5.7.2.1
에 을 곱합니다.
단계 5.7.2.2
를 승 합니다.
단계 5.7.2.3
를 승 합니다.
단계 5.7.2.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.7.2.5
를 에 더합니다.
단계 5.8
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 5.9
반각 공식을 이용해 를 로 바꿔 씁니다.
단계 5.10
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 5.11
와 을 묶습니다.
단계 5.12
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 5.13
상수 규칙을 적용합니다.
단계 5.14
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 와 를 이용하여 다시 씁니다.
단계 5.14.1
로 둡니다. 를 구합니다.
단계 5.14.1.1
를 미분합니다.
단계 5.14.1.2
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.14.1.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.14.1.4
에 을 곱합니다.
단계 5.14.2
의 에 극한의 하한을 대입합니다.
단계 5.14.3
에 을 곱합니다.
단계 5.14.4
의 에 극한의 상한을 대입합니다.
단계 5.14.5
에 을 곱합니다.
단계 5.14.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 5.14.7
와 , 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 5.15
와 을 묶습니다.
단계 5.16
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 5.17
를 에 대해 적분하면 입니다.
단계 5.18
상수 규칙을 적용합니다.
단계 5.19
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 5.20
멱의 법칙에 의해 를 에 대해 적분하면 가 됩니다.
단계 5.21
와 을 묶습니다.
단계 5.22
대입하여 간단히 합니다.
단계 5.22.1
, 일 때, 값을 계산합니다.
단계 5.22.2
, 일 때, 값을 계산합니다.
단계 5.22.3
, 일 때, 값을 계산합니다.
단계 5.22.4
, 일 때, 값을 계산합니다.
단계 5.22.5
간단히 합니다.
단계 5.22.5.1
를 에 더합니다.
단계 5.22.5.2
에 을 곱합니다.
단계 5.22.5.3
에 을 곱합니다.
단계 5.22.5.4
를 에 더합니다.
단계 5.22.5.5
를 승 합니다.
단계 5.22.5.6
및 의 공약수로 약분합니다.
단계 5.22.5.6.1
에서 를 인수분해합니다.
단계 5.22.5.6.2
공약수로 약분합니다.
단계 5.22.5.6.2.1
에서 를 인수분해합니다.
단계 5.22.5.6.2.2
공약수로 약분합니다.
단계 5.22.5.6.2.3
수식을 다시 씁니다.
단계 5.22.5.6.2.4
을 로 나눕니다.
단계 5.22.5.7
을 여러 번 거듭제곱해도 이 나옵니다.
단계 5.22.5.8
및 의 공약수로 약분합니다.
단계 5.22.5.8.1
에서 를 인수분해합니다.
단계 5.22.5.8.2
공약수로 약분합니다.
단계 5.22.5.8.2.1
에서 를 인수분해합니다.
단계 5.22.5.8.2.2
공약수로 약분합니다.
단계 5.22.5.8.2.3
수식을 다시 씁니다.
단계 5.22.5.8.2.4
을 로 나눕니다.
단계 5.22.5.9
에 을 곱합니다.
단계 5.22.5.10
를 에 더합니다.
단계 5.22.5.11
에 을 곱합니다.
단계 5.22.5.12
에서 을 뺍니다.
단계 5.23
간단히 합니다.
단계 5.23.1
의 정확한 값은 입니다.
단계 5.23.2
에 을 곱합니다.
단계 5.23.3
를 에 더합니다.
단계 5.23.4
와 을 묶습니다.
단계 5.23.5
를 에 더합니다.
단계 5.23.6
와 을 묶습니다.
단계 5.23.7
에 을 곱합니다.
단계 5.23.8
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 5.23.9
와 을 묶습니다.
단계 5.23.10
공통분모를 가진 분자끼리 묶습니다.
단계 5.23.11
에 을 곱합니다.
단계 5.23.12
를 에 더합니다.
단계 5.24
을 로 나눕니다.
단계 6