미적분 예제

두 곡선 사이의 넓이 구하기 y=sin(x) , x=0 , x=pi
, ,
단계 1
곡선 사이의 교첨을 찾으려면 치환하여 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
각 방정식의 동일한 변을 소거하여 하나의 식으로 만듭니다.
단계 1.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 1.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
의 정확한 값은 입니다.
단계 1.2.3
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 1.2.4
에서 을 뺍니다.
단계 1.2.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 1.2.5.2
주기 공식에서 을 대입합니다.
단계 1.2.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 1.2.5.4
로 나눕니다.
단계 1.2.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 1.2.7
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 1.3
를 대입합니다.
단계 1.4
모든 해를 나열합니다.
단계 2
두 곡선 사이의 영역의 넓이는 각 영역의 상위 곡선의 적분값에서 하위 곡선의 적분값을 뺀 값으로 정의됩니다. 영역은 두 곡선의 교점에 의해 정해집니다. 이는 대수적으로 또는 그래프로 정해집니다.
단계 3
과(와) 사이의 영역을 구하려면 적분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
적분을 묶어 하나의 적분으로 만듭니다.
단계 3.2
에서 을 뺍니다.
단계 3.3
에 대해 적분하면 입니다.
단계 3.4
답을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
, 일 때, 값을 계산합니다.
단계 3.4.2
의 정확한 값은 입니다.
단계 3.4.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.3.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제2사분면에서 코사인이 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 3.4.3.2
의 정확한 값은 입니다.
단계 3.4.3.3
을 곱합니다.
단계 3.4.3.4
을 곱합니다.
단계 3.4.3.5
에 더합니다.
단계 4