문제를 입력하십시오...
미적분 예제
,
단계 1
단계 1.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.2
의 값을 구합니다.
단계 1.2.1
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 1.2.1.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 1.2.1.2
를 에 대해 미분하면입니다.
단계 1.2.1.3
를 모두 로 바꿉니다.
단계 1.2.2
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.4
에 을 곱합니다.
단계 1.2.5
의 왼쪽으로 이동하기
단계 1.3
의 값을 구합니다.
단계 1.3.1
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 1.3.1.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 1.3.1.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.1.3
를 모두 로 바꿉니다.
단계 1.3.2
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 1.3.2.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 1.3.2.2
를 에 대해 미분하면입니다.
단계 1.3.2.3
를 모두 로 바꿉니다.
단계 1.3.3
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.3.4
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.5
에 을 곱합니다.
단계 1.3.6
의 왼쪽으로 이동하기
단계 1.3.7
에 을 곱합니다.
단계 1.4
항을 다시 정렬합니다.
단계 1.5
일 때 도함수의 값을 계산합니다.
단계 1.6
간단히 합니다.
단계 1.6.1
각 항을 간단히 합니다.
단계 1.6.1.1
에 을 곱합니다.
단계 1.6.1.2
의 정확한 값은 입니다.
단계 1.6.1.3
에 을 곱합니다.
단계 1.6.1.4
에 을 곱합니다.
단계 1.6.1.5
의 정확한 값은 입니다.
단계 1.6.1.6
에 을 곱합니다.
단계 1.6.1.7
에 을 곱합니다.
단계 1.6.1.8
의 정확한 값은 입니다.
단계 1.6.1.9
에 을 곱합니다.
단계 1.6.2
를 에 더합니다.
단계 2
단계 2.1
기울기 과 주어진 점 을 사용해 점-기울기 형태 의 및 에 대입합니다. 점-기울기 형태는 기울기 방정식 에서 유도한 식입니다.
단계 2.2
방정식을 간단히 하고 점-기울기 형태를 유지합니다.
단계 2.3
에 대해 풉니다.
단계 2.3.1
를 에 더합니다.
단계 2.3.2
를 에 더합니다.
단계 3