미적분 예제

Résoudre pour x sin(2x)>=sin(x)
단계 1
부등식의 양변에서 를 뺍니다.
단계 2
사인 배각 공식을 적용합니다.
단계 3
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에서 를 인수분해합니다.
단계 3.2
에서 를 인수분해합니다.
단계 3.3
에서 를 인수분해합니다.
단계 4
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
와 같다고 둡니다.
단계 5.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 5.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.2.1
의 정확한 값은 입니다.
단계 5.2.3
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 5.2.4
에서 을 뺍니다.
단계 5.2.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 5.2.5.2
주기 공식에서 을 대입합니다.
단계 5.2.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 5.2.5.4
로 나눕니다.
단계 5.2.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
와 같다고 둡니다.
단계 6.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
방정식의 양변에 를 더합니다.
단계 6.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1
의 각 항을 로 나눕니다.
단계 6.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.2.1.1
공약수로 약분합니다.
단계 6.2.2.2.1.2
로 나눕니다.
단계 6.2.3
코사인 안의 를 꺼내기 위해 방정식 양변에 코사인의 역을 취합니다.
단계 6.2.4
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.4.1
의 정확한 값은 입니다.
단계 6.2.5
코사인 함수는 제1사분면과 제4사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제4사분면에 있는 해를 구합니다.
단계 6.2.6
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.6.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 6.2.6.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.6.2.1
을 묶습니다.
단계 6.2.6.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 6.2.6.3
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.6.3.1
을 곱합니다.
단계 6.2.6.3.2
에서 을 뺍니다.
단계 6.2.7
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.7.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 6.2.7.2
주기 공식에서 을 대입합니다.
단계 6.2.7.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 6.2.7.4
로 나눕니다.
단계 6.2.8
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
임의의 정수 에 대해
임의의 정수 에 대해
단계 7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
임의의 정수 에 대해
단계 8
, 에 통합합니다.
임의의 정수 에 대해
단계 9
각 근을 사용하여 시험 구간을 만듭니다.
단계 10
각 구간에서 실험값을 선택하고 이를 원래의 부등식에 대입하여 어느 구간이 부등식을 만족하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.1.2
원래 부등식에서 로 치환합니다.
단계 10.1.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 10.2
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.2.2
원래 부등식에서 로 치환합니다.
단계 10.2.3
좌변 이 우변 보다 작으므로 주어진 명제는 거짓입니다.
False
False
단계 10.3
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.3.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.3.2
원래 부등식에서 로 치환합니다.
단계 10.3.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 10.4
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.4.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.4.2
원래 부등식에서 로 치환합니다.
단계 10.4.3
좌변 이 우변 보다 작으므로 주어진 명제는 거짓입니다.
False
False
단계 10.5
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.5.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.5.2
원래 부등식에서 로 치환합니다.
단계 10.5.3
좌변 가 우변 보다 크므로 주어진 명제는 항상 참입니다.
True
True
단계 10.6
구간에서 하나의 값을 시험하여 이 값이 부등식을 참이 되게 하는지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.6.1
구간에서 하나의 값을 선택하고 이 값이 원래의 부등식을 참이 되게 하는지 확인합니다.
단계 10.6.2
원래 부등식에서 로 치환합니다.
단계 10.6.3
좌변 이 우변 보다 작으므로 주어진 명제는 거짓입니다.
False
False
단계 10.7
구간을 비교하여 원래의 부등식을 만족하는 구간을 찾습니다.
거짓
거짓
거짓
거짓
거짓
거짓
단계 11
해는 모두 참인 구간으로 이루어져 있습니다.
or or , for any integer
단계 12
구간을 조합합니다.
임의의 정수 에 대해
단계 13