문제를 입력하십시오...
미적분 예제
단계 1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 2
단계 2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
와 을 묶습니다.
단계 2.4
에 을 곱합니다.
단계 2.5
와 을 묶습니다.
단계 2.6
및 의 공약수로 약분합니다.
단계 2.6.1
에서 를 인수분해합니다.
단계 2.6.2
공약수로 약분합니다.
단계 2.6.2.1
에서 를 인수분해합니다.
단계 2.6.2.2
공약수로 약분합니다.
단계 2.6.2.3
수식을 다시 씁니다.
단계 2.6.2.4
을 로 나눕니다.
단계 3
단계 3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
을 로 바꿔 씁니다.
단계 3.3
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 3.3.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 3.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3.3
를 모두 로 바꿉니다.
단계 3.4
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.5
의 지수를 곱합니다.
단계 3.5.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.5.2
에 을 곱합니다.
단계 3.6
에 을 곱합니다.
단계 3.7
를 승 합니다.
단계 3.8
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.9
에서 을 뺍니다.
단계 3.10
에 을 곱합니다.
단계 3.11
와 을 묶습니다.
단계 3.12
에 을 곱합니다.
단계 3.13
와 을 묶습니다.
단계 3.14
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.