미적분 예제

Trouver la dérivée - d/dx e^(4x x^3) 의 자연로그
단계 1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 1.3
를 모두 로 바꿉니다.
단계 2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 4
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.2
에 대해 미분하면입니다.
단계 4.3
를 모두 로 바꿉니다.
단계 5
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
을 묶습니다.
단계 5.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
승 합니다.
단계 5.2.2
에서 를 인수분해합니다.
단계 5.2.3
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.3.1
에서 를 인수분해합니다.
단계 5.2.3.2
공약수로 약분합니다.
단계 5.2.3.3
수식을 다시 씁니다.
단계 5.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.4
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1
을 묶습니다.
단계 5.4.2
을 묶습니다.
단계 5.4.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.1
공약수로 약분합니다.
단계 5.4.3.2
로 나눕니다.
단계 5.5
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.6
을 곱합니다.
단계 6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
분배 법칙을 적용합니다.
단계 6.2
분배 법칙을 적용합니다.
단계 6.3
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
을 곱합니다.
단계 6.3.2
의 왼쪽으로 이동하기
단계 6.4
항을 다시 정렬합니다.