문제를 입력하십시오...
미적분 예제
단계 1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 2
단계 2.1
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 2.1.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 2.1.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.1.3
를 모두 로 바꿉니다.
단계 2.2
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 2.2.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 2.2.2
를 에 대해 미분하면입니다.
단계 2.2.3
를 모두 로 바꿉니다.
단계 2.3
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.4
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.5
에 을 곱합니다.
단계 2.6
의 왼쪽으로 이동하기
단계 2.7
에 을 곱합니다.
단계 3
단계 3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 3.2.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 3.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.3
를 모두 로 바꿉니다.
단계 3.3
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 3.3.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 3.3.2
를 에 대해 미분하면입니다.
단계 3.3.3
를 모두 로 바꿉니다.
단계 3.4
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.5
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.6
에 을 곱합니다.
단계 3.7
에 을 곱합니다.
단계 3.8
에 을 곱합니다.
단계 3.9
에 을 곱합니다.
단계 4
단계 4.1
에서 를 인수분해합니다.
단계 4.1.1
에서 를 인수분해합니다.
단계 4.1.2
에서 를 인수분해합니다.
단계 4.1.3
에서 를 인수분해합니다.
단계 4.2
피타고라스의 정리를 적용합니다.
단계 4.3
에 을 곱합니다.