미적분 예제

Trouver la dérivée - d/dx x^2arctan(e^x)
단계 1
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2
에 대해 미분하면입니다.
단계 2.3
를 모두 로 바꿉니다.
단계 3
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.1.2
의 왼쪽으로 이동하기
단계 3.2
을 묶습니다.
단계 4
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 5
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
을 묶습니다.
단계 5.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 6
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 7
공통분모를 가진 분자끼리 묶습니다.
단계 8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
분배 법칙을 적용합니다.
단계 8.2
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 8.2.1.2
을 곱합니다.
단계 8.2.1.3
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 8.2.2
에서 인수를 다시 정렬합니다.
단계 8.3
항을 다시 정렬합니다.