미적분 예제

임계점 구하기 4x^3-12x
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.3
을 곱합니다.
단계 1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.3.3
을 곱합니다.
단계 1.2
에 대한 1차 도함수는 입니다.
단계 2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
방정식의 양변에 를 더합니다.
단계 2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
의 각 항을 로 나눕니다.
단계 2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1
공약수로 약분합니다.
단계 2.3.2.1.2
로 나눕니다.
단계 2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1
로 나눕니다.
단계 2.4
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 2.5
의 거듭제곱근은 입니다.
단계 2.6
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.6.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.6.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
를 대입합니다.
단계 4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1.1
1의 모든 거듭제곱은 1입니다.
단계 4.1.2.1.2
을 곱합니다.
단계 4.1.2.1.3
을 곱합니다.
단계 4.1.2.2
에서 을 뺍니다.
단계 4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
를 대입합니다.
단계 4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.1
승 합니다.
단계 4.2.2.1.2
을 곱합니다.
단계 4.2.2.1.3
을 곱합니다.
단계 4.2.2.2
에 더합니다.
단계 4.3
모든 점을 나열합니다.
단계 5