미적분 예제

임계점 구하기 f(x)=x^5-10x^3
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.3
을 곱합니다.
단계 1.2
에 대한 1차 도함수는 입니다.
단계 2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
로 바꿔 씁니다.
단계 2.2.2
로 정의합니다. 식에 나타나는 모든 로 바꿉니다.
단계 2.2.3
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.3.1
에서 를 인수분해합니다.
단계 2.2.3.2
에서 를 인수분해합니다.
단계 2.2.3.3
에서 를 인수분해합니다.
단계 2.2.4
를 모두 로 바꿉니다.
단계 2.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
와 같다고 둡니다.
단계 2.4.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 2.4.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.2.1
로 바꿔 씁니다.
단계 2.4.2.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 2.4.2.2.3
플러스 마이너스 입니다.
단계 2.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
와 같다고 둡니다.
단계 2.5.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.1
방정식의 양변에 를 더합니다.
단계 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 2.5.2.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.2.3.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 2.5.2.3.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 2.5.2.3.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
를 대입합니다.
단계 4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.1.2.1.2
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.1.2.1.3
을 곱합니다.
단계 4.1.2.2
에 더합니다.
단계 4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
를 대입합니다.
단계 4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.1
로 바꿔 씁니다.
단계 4.2.2.1.2
승 합니다.
단계 4.2.2.1.3
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.3.1
에서 를 인수분해합니다.
단계 4.2.2.1.3.2
로 바꿔 씁니다.
단계 4.2.2.1.4
근호 안의 항을 밖으로 빼냅니다.
단계 4.2.2.1.5
로 바꿔 씁니다.
단계 4.2.2.1.6
승 합니다.
단계 4.2.2.1.7
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1.7.1
에서 를 인수분해합니다.
단계 4.2.2.1.7.2
로 바꿔 씁니다.
단계 4.2.2.1.8
근호 안의 항을 밖으로 빼냅니다.
단계 4.2.2.1.9
을 곱합니다.
단계 4.2.2.2
에서 을 뺍니다.
단계 4.3
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
를 대입합니다.
단계 4.3.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1.1
에 곱의 미분 법칙을 적용합니다.
단계 4.3.2.1.2
승 합니다.
단계 4.3.2.1.3
로 바꿔 씁니다.
단계 4.3.2.1.4
승 합니다.
단계 4.3.2.1.5
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1.5.1
에서 를 인수분해합니다.
단계 4.3.2.1.5.2
로 바꿔 씁니다.
단계 4.3.2.1.6
근호 안의 항을 밖으로 빼냅니다.
단계 4.3.2.1.7
을 곱합니다.
단계 4.3.2.1.8
에 곱의 미분 법칙을 적용합니다.
단계 4.3.2.1.9
승 합니다.
단계 4.3.2.1.10
로 바꿔 씁니다.
단계 4.3.2.1.11
승 합니다.
단계 4.3.2.1.12
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1.12.1
에서 를 인수분해합니다.
단계 4.3.2.1.12.2
로 바꿔 씁니다.
단계 4.3.2.1.13
근호 안의 항을 밖으로 빼냅니다.
단계 4.3.2.1.14
을 곱합니다.
단계 4.3.2.1.15
을 곱합니다.
단계 4.3.2.2
에 더합니다.
단계 4.4
모든 점을 나열합니다.
단계 5