미적분 예제

Trouver la dérivée - d/d@VAR f(x)=x/((6x-5)^9)
단계 1
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 2
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.1.2
을 곱합니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
을 곱합니다.
단계 3
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3
를 모두 로 바꿉니다.
단계 4
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
을 곱합니다.
단계 4.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
에서 를 인수분해합니다.
단계 4.2.2
에서 를 인수분해합니다.
단계 4.2.3
에서 를 인수분해합니다.
단계 5
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
에서 를 인수분해합니다.
단계 5.2
공약수로 약분합니다.
단계 5.3
수식을 다시 씁니다.
단계 6
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 7
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 8
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 9
을 곱합니다.
단계 10
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 11
항을 더해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
에 더합니다.
단계 11.2
을 곱합니다.
단계 11.3
에서 을 뺍니다.
단계 12
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.1
에서 를 인수분해합니다.
단계 12.2
로 바꿔 씁니다.
단계 12.3
에서 를 인수분해합니다.
단계 12.4
로 바꿔 씁니다.
단계 12.5
마이너스 부호를 분수 앞으로 보냅니다.