미적분 예제

근(영점) 구하기 sin(x)(2)=cos(x)
단계 1
방정식의 각 항을 로 나눕니다.
단계 2
분수를 나눕니다.
단계 3
로 변환합니다.
단계 4
로 나눕니다.
단계 5
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
공약수로 약분합니다.
단계 5.2
수식을 다시 씁니다.
단계 6
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
의 각 항을 로 나눕니다.
단계 6.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.1
공약수로 약분합니다.
단계 6.2.1.2
로 나눕니다.
단계 7
탄젠트 안의 를 꺼내기 위해 방정식 양변에 탄젠트의 역을 취합니다.
단계 8
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
의 값을 구합니다.
단계 9
탄젠트 함수는 제1사분면과 제3사분면에서 양의 값을 가집니다. 두번째 해를 구하려면 에 기준각을 더하여 제4사분면에 있는 해를 구합니다.
단계 10
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
괄호를 제거합니다.
단계 10.2
괄호를 제거합니다.
단계 10.3
에 더합니다.
단계 11
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 11.2
주기 공식에서 을 대입합니다.
단계 11.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 11.4
로 나눕니다.
단계 12
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 13