미적분 예제

Trouver la dérivée - d/dx y = log base 2 of (2x^2-x)^(5/2)
단계 1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.2
에 대해 미분하면입니다.
단계 1.3
를 모두 로 바꿉니다.
단계 2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
를 모두 로 바꿉니다.
단계 3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 4
을 묶습니다.
단계 5
공통분모를 가진 분자끼리 묶습니다.
단계 6
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
을 곱합니다.
단계 6.2
에서 을 뺍니다.
단계 7
을 묶습니다.
단계 8
을 곱합니다.
단계 9
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 10
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1.1
를 옮깁니다.
단계 10.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 10.1.3
공통분모를 가진 분자끼리 묶습니다.
단계 10.1.4
에 더합니다.
단계 10.1.5
로 나눕니다.
단계 10.2
을 간단히 합니다.
단계 11
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 12
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 13
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 14
을 곱합니다.
단계 15
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 16
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 17
을 곱합니다.
단계 18
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 18.1
분배 법칙을 적용합니다.
단계 18.2
분배 법칙을 적용합니다.
단계 18.3
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 18.3.1
을 곱합니다.
단계 18.3.2
을 곱합니다.
단계 18.4
인수를 다시 정렬합니다.
단계 18.5
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 18.5.1
에서 를 인수분해합니다.
단계 18.5.2
에서 를 인수분해합니다.
단계 18.5.3
에서 를 인수분해합니다.
단계 18.6
을 곱합니다.
단계 18.7
의 왼쪽으로 이동하기