미적분 예제

Trouver dz/dy y=19z^2+1/(5z)
단계 1
방정식의 양변을 미분합니다.
단계 2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3
방정식의 우변을 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.2.3
를 모두 로 바꿉니다.
단계 3.2.3
로 바꿔 씁니다.
단계 3.2.4
을 곱합니다.
단계 3.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.3.2
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 3.3.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.3.4
로 바꿔 씁니다.
단계 3.3.5
을 곱합니다.
단계 3.3.6
을 곱합니다.
단계 3.3.7
에서 을 뺍니다.
단계 3.3.8
마이너스 부호를 분수 앞으로 보냅니다.
단계 3.3.9
을 곱합니다.
단계 4
좌변이 우변과 같도록 방정식을 고칩니다.
단계 5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
로 방정식을 다시 씁니다.
단계 5.2
방정식 항의 최소공분모를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
여러 값의 최소공분모를 구하는 것은 해당 값들의 분모의 최소공배수를 구하는 것과 같습니다.
단계 5.2.2
1과 식의 최소공배수는 그 식 자체입니다.
단계 5.3
의 각 항에 을 곱하고 분수를 소거합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
의 각 항에 을 곱합니다.
단계 5.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1.1.1
를 옮깁니다.
단계 5.3.2.1.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1.1.2.1
승 합니다.
단계 5.3.2.1.1.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.3.2.1.1.3
에 더합니다.
단계 5.3.2.1.2
을 곱합니다.
단계 5.3.2.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1.3.1
의 마이너스 부호를 분자로 이동합니다.
단계 5.3.2.1.3.2
공약수로 약분합니다.
단계 5.3.2.1.3.3
수식을 다시 씁니다.
단계 5.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1
을 곱합니다.
단계 5.4
식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1.1
에서 를 인수분해합니다.
단계 5.4.1.2
에서 를 인수분해합니다.
단계 5.4.1.3
에서 를 인수분해합니다.
단계 5.4.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.2.1
의 각 항을 로 나눕니다.
단계 5.4.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.2.2.1.1
공약수로 약분합니다.
단계 5.4.2.2.1.2
로 나눕니다.
단계 6
를 대입합니다.