미적분 예제

Trouver la dérivée - d/dx y=( x+1)e^(-2x) 의 제곱근
단계 1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 3
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 3.3
를 모두 로 바꿉니다.
단계 4
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
을 곱합니다.
단계 4.3.2
의 왼쪽으로 이동하기
단계 4.4
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 4.5
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 6
을 묶습니다.
단계 7
공통분모를 가진 분자끼리 묶습니다.
단계 8
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
을 곱합니다.
단계 8.2
에서 을 뺍니다.
단계 9
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 9.2
을 묶습니다.
단계 9.3
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 10
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 11
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
에 더합니다.
단계 11.2
을 묶습니다.
단계 12
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 13
을 묶습니다.
단계 14
공통분모를 가진 분자끼리 묶습니다.
단계 15
을 곱합니다.
단계 16
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.1
분배 법칙을 적용합니다.
단계 16.2
분배 법칙을 적용합니다.
단계 16.3
분배 법칙을 적용합니다.
단계 16.4
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.4.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.4.1.1
를 옮깁니다.
단계 16.4.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 16.4.1.3
공통분모를 가진 분자끼리 묶습니다.
단계 16.4.1.4
에 더합니다.
단계 16.4.1.5
로 나눕니다.
단계 16.4.2
을 간단히 합니다.
단계 16.4.3
을 곱합니다.
단계 16.5
항을 다시 정렬합니다.
단계 16.6
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 16.6.1
에서 를 인수분해합니다.
단계 16.6.2
에서 를 인수분해합니다.
단계 16.6.3
을 곱합니다.
단계 16.6.4
에서 를 인수분해합니다.
단계 16.6.5
에서 를 인수분해합니다.
단계 16.7
에서 를 인수분해합니다.
단계 16.8
에서 를 인수분해합니다.
단계 16.9
에서 를 인수분해합니다.
단계 16.10
로 바꿔 씁니다.
단계 16.11
에서 를 인수분해합니다.
단계 16.12
로 바꿔 씁니다.
단계 16.13
마이너스 부호를 분수 앞으로 보냅니다.