문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
1차 도함수를 구합니다.
단계 1.1.1
상수배의 미분법을 이용하여 미분합니다.
단계 1.1.1.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.1.1.2
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 1.1.3
의 지수를 곱합니다.
단계 1.1.3.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.1.3.2
의 공약수로 약분합니다.
단계 1.1.3.2.1
공약수로 약분합니다.
단계 1.1.3.2.2
수식을 다시 씁니다.
단계 1.1.4
간단히 합니다.
단계 1.1.5
멱의 법칙을 이용하여 미분합니다.
단계 1.1.5.1
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.5.2
에 을 곱합니다.
단계 1.1.6
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 1.1.6.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 1.1.6.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.6.3
를 모두 로 바꿉니다.
단계 1.1.7
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.1.8
와 을 묶습니다.
단계 1.1.9
공통분모를 가진 분자끼리 묶습니다.
단계 1.1.10
분자를 간단히 합니다.
단계 1.1.10.1
에 을 곱합니다.
단계 1.1.10.2
에서 을 뺍니다.
단계 1.1.11
분수를 통분합니다.
단계 1.1.11.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.1.11.2
와 을 묶습니다.
단계 1.1.11.3
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 1.1.11.4
와 을 묶습니다.
단계 1.1.12
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.13
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.14
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.1.15
식을 간단히 합니다.
단계 1.1.15.1
를 에 더합니다.
단계 1.1.15.2
에 을 곱합니다.
단계 1.1.16
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.1.17
와 을 묶습니다.
단계 1.1.18
공통분모를 가진 분자끼리 묶습니다.
단계 1.1.19
지수를 더하여 에 을 곱합니다.
단계 1.1.19.1
를 옮깁니다.
단계 1.1.19.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.1.19.3
공통분모를 가진 분자끼리 묶습니다.
단계 1.1.19.4
를 에 더합니다.
단계 1.1.19.5
을 로 나눕니다.
단계 1.1.20
을 간단히 합니다.
단계 1.1.21
의 왼쪽으로 이동하기
단계 1.1.22
을 곱의 형태로 바꿉니다.
단계 1.1.23
에 을 곱합니다.
단계 1.1.24
를 승 합니다.
단계 1.1.25
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.1.26
식을 간단히 합니다.
단계 1.1.26.1
을(를) 공통분모가 있는 분수로 표현합니다.
단계 1.1.26.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.1.26.3
를 에 더합니다.
단계 1.1.27
와 을 묶습니다.
단계 1.1.28
공약수로 약분합니다.
단계 1.1.29
수식을 다시 씁니다.
단계 1.1.30
간단히 합니다.
단계 1.1.30.1
분배 법칙을 적용합니다.
단계 1.1.30.2
분자를 간단히 합니다.
단계 1.1.30.2.1
에 을 곱합니다.
단계 1.1.30.2.2
에서 을 뺍니다.
단계 1.2
의 에 대한 1차 도함수는 입니다.
단계 2
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
분자가 0과 같게 만듭니다.
단계 2.3
방정식의 양변에 를 더합니다.
단계 3
단계 3.1
규칙 을 적용하여 지수 형태를 근호로 다시 씁니다.
단계 3.2
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 3.3
에 대해 풉니다.
단계 3.3.1
방정식의 좌변의 근호를 없애기 위해 방정식 양변을 제곱합니다.
단계 3.3.2
방정식의 각 변을 간단히 합니다.
단계 3.3.2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3.3.2.2
좌변을 간단히 합니다.
단계 3.3.2.2.1
의 지수를 곱합니다.
단계 3.3.2.2.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.3.2.2.1.2
의 공약수로 약분합니다.
단계 3.3.2.2.1.2.1
공약수로 약분합니다.
단계 3.3.2.2.1.2.2
수식을 다시 씁니다.
단계 3.3.2.3
우변을 간단히 합니다.
단계 3.3.2.3.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 3.3.3
에 대해 풉니다.
단계 3.3.3.1
를 와 같다고 둡니다.
단계 3.3.3.2
방정식의 양변에 를 더합니다.
단계 3.4
식이 정의되지 않은 지점을 알아내려면 의 피개법수를 보다 작게 설정해야 합니다.
단계 3.5
에 대해 풉니다.
단계 3.5.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
단계 3.5.2
방정식을 간단히 합니다.
단계 3.5.2.1
좌변을 간단히 합니다.
단계 3.5.2.1.1
근호 안의 항을 밖으로 빼냅니다.
단계 3.5.2.2
우변을 간단히 합니다.
단계 3.5.2.2.1
을 간단히 합니다.
단계 3.5.2.2.1.1
을 로 바꿔 씁니다.
단계 3.5.2.2.1.2
근호 안의 항을 밖으로 빼냅니다.
단계 3.5.3
부등식 양변에 를 더합니다.
단계 3.6
분모가 이거나 제곱근의 인수가 보다 작거나 또는 로그의 진수가 보다 작거나 같은 경우 식이 정의되지 않습니다.
단계 4
단계 4.1
일 때 값을 구합니다.
단계 4.1.1
에 를 대입합니다.
단계 4.1.2
간단히 합니다.
단계 4.1.2.1
에 을 곱합니다.
단계 4.1.2.2
분모를 간단히 합니다.
단계 4.1.2.2.1
에서 을 뺍니다.
단계 4.1.2.2.2
의 거듭제곱근은 입니다.
단계 4.1.2.3
을 로 나눕니다.
단계 4.2
일 때 값을 구합니다.
단계 4.2.1
에 를 대입합니다.
단계 4.2.2
간단히 합니다.
단계 4.2.2.1
괄호를 제거합니다.
단계 4.2.2.2
에서 을 뺍니다.
단계 4.2.2.3
을 로 바꿔 씁니다.
단계 4.2.2.4
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 4.2.2.5
으로 나누기가 수식에 포함되어 있습니다. 수식이 정의되지 않습니다.
정의되지 않음
정의되지 않음
정의되지 않음
단계 4.3
모든 점을 나열합니다.
단계 5