미적분 예제

임계점 구하기 sin(x)^2
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.3
를 모두 로 바꿉니다.
단계 1.1.2
에 대해 미분하면입니다.
단계 1.1.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
인수를 다시 정렬합니다.
단계 1.1.3.2
을 다시 정렬합니다.
단계 1.1.3.3
을 다시 정렬합니다.
단계 1.1.3.4
사인 배각 공식을 적용합니다.
단계 1.2
에 대한 1차 도함수는 입니다.
단계 2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
사인 안의 를 꺼내기 위해 방정식 양변에 사인의 역을 취합니다.
단계 2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
의 정확한 값은 입니다.
단계 2.4
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
의 각 항을 로 나눕니다.
단계 2.4.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.2.1.1
공약수로 약분합니다.
단계 2.4.2.1.2
로 나눕니다.
단계 2.4.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.3.1
로 나눕니다.
단계 2.5
사인 함수는 제1사분면과 제2사분면에서 양의 값을 가집니다. 두 번째 해를 구하려면 에서 기준각을 빼어 제2사분면에 속한 해를 구합니다.
단계 2.6
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1.1
을 곱합니다.
단계 2.6.1.2
에 더합니다.
단계 2.6.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.2.1
의 각 항을 로 나눕니다.
단계 2.6.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.2.2.1.1
공약수로 약분합니다.
단계 2.6.2.2.1.2
로 나눕니다.
단계 2.7
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 2.7.2
주기 공식에서 을 대입합니다.
단계 2.7.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.7.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.4.1
공약수로 약분합니다.
단계 2.7.4.2
로 나눕니다.
단계 2.8
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 2.9
답안을 하나로 합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
를 대입합니다.
단계 4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1
의 정확한 값은 입니다.
단계 4.1.2.2
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
를 대입합니다.
단계 4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
의 정확한 값은 입니다.
단계 4.2.2.2
1의 모든 거듭제곱은 1입니다.
단계 4.3
모든 점을 나열합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 5