문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
1차 도함수를 구합니다.
단계 1.1.1
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 1.1.2
미분합니다.
단계 1.1.2.1
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.2
에 을 곱합니다.
단계 1.1.2.3
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.2.4
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.1.2.5
를 에 더합니다.
단계 1.1.2.6
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.7
곱합니다.
단계 1.1.2.7.1
에 을 곱합니다.
단계 1.1.2.7.2
에 을 곱합니다.
단계 1.1.2.8
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.9
항을 더해 식을 간단히 합니다.
단계 1.1.2.9.1
에 을 곱합니다.
단계 1.1.2.9.2
를 에 더합니다.
단계 1.1.2.9.3
식을 간단히 합니다.
단계 1.1.2.9.3.1
를 에 더합니다.
단계 1.1.2.9.3.2
항을 다시 정렬합니다.
단계 1.2
의 에 대한 1차 도함수는 입니다.
단계 2
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
분자가 0과 같게 만듭니다.
단계 2.3
이므로, 해가 존재하지 않습니다.
해 없음
해 없음
단계 3
도함수가 이거나 정의되지 않았다면 원래 문제의 정의역에는 값이 존재하지 않습니다.
임계점 없음
단계 4
단계 4.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 4.2
에 대해 풉니다.
단계 4.2.1
방정식의 좌변을 인수분해합니다.
단계 4.2.1.1
에서 를 인수분해합니다.
단계 4.2.1.1.1
에서 를 인수분해합니다.
단계 4.2.1.1.2
을 로 바꿔 씁니다.
단계 4.2.1.1.3
에서 를 인수분해합니다.
단계 4.2.1.2
에 곱의 미분 법칙을 적용합니다.
단계 4.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 4.2.2.1
의 각 항을 로 나눕니다.
단계 4.2.2.2
좌변을 간단히 합니다.
단계 4.2.2.2.1
의 공약수로 약분합니다.
단계 4.2.2.2.1.1
공약수로 약분합니다.
단계 4.2.2.2.1.2
을 로 나눕니다.
단계 4.2.2.3
우변을 간단히 합니다.
단계 4.2.2.3.1
를 승 합니다.
단계 4.2.2.3.2
을 로 나눕니다.
단계 4.2.3
를 와 같다고 둡니다.
단계 4.2.4
방정식의 양변에 를 더합니다.
단계 5
도함수 가 이 되거나 정의되지 않는 점을 구한 후 구간에서 가 증가하는지, 감소하는지를 확인합니다.
단계 6
단계 6.1
수식에서 변수 에 을 대입합니다.
단계 6.2
결과를 간단히 합니다.
단계 6.2.1
분모를 간단히 합니다.
단계 6.2.1.1
에 을 곱합니다.
단계 6.2.1.2
를 에 더합니다.
단계 6.2.1.3
1의 모든 거듭제곱은 1입니다.
단계 6.2.2
을 로 나눕니다.
단계 6.2.3
최종 답은 입니다.
단계 6.3
에서의 도함수는 입니다. 미분값이 양수이므로 함수는 구간에서 증가합니다.
이므로 에서 증가함
이므로 에서 증가함
단계 7
단계 7.1
수식에서 변수 에 을 대입합니다.
단계 7.2
결과를 간단히 합니다.
단계 7.2.1
분모를 간단히 합니다.
단계 7.2.1.1
에 을 곱합니다.
단계 7.2.1.2
를 에 더합니다.
단계 7.2.1.3
를 승 합니다.
단계 7.2.2
을 로 나눕니다.
단계 7.2.3
최종 답은 입니다.
단계 7.3
에서의 도함수는 입니다. 미분값이 양수이므로 함수는 구간에서 증가합니다.
이므로 에서 증가함
이므로 에서 증가함
단계 8
함수가 증가하고 감소하는 구간을 구합니다.
증가:
단계 9