미적분 예제

변곡점 구하기 f(x)=x^3+30x^2
단계 1
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.3
을 곱합니다.
단계 1.2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.2.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.2.3
을 곱합니다.
단계 1.2.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3.3
을 곱합니다.
단계 1.3
에 대한 2차 도함수는 입니다.
단계 2
2차 도함수를 으로 두고 식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
2차 도함수를 과(와) 같게 합니다.
단계 2.2
방정식의 양변에서 를 뺍니다.
단계 2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
의 각 항을 로 나눕니다.
단계 2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1.1
공약수로 약분합니다.
단계 2.3.2.1.2
로 나눕니다.
단계 2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.3.1
로 나눕니다.
단계 3
2차 도함수가 인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
을 대입하여 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
수식에서 변수 을 대입합니다.
단계 3.1.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1.1
승 합니다.
단계 3.1.2.1.2
승 합니다.
단계 3.1.2.1.3
을 곱합니다.
단계 3.1.2.2
에 더합니다.
단계 3.1.2.3
최종 답은 입니다.
단계 3.2
을 대입하여 구한 점은 입니다. 이 점은 변곡점입니다.
단계 4
을 변곡점 가능성이 있는 점 주위 간격으로 나눕니다.
단계 5
구간에 속한 값을 2차 도함수에 대입하여 증가하는지 또는 감소하는지를 판단합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
수식에서 변수 을 대입합니다.
단계 5.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
을 곱합니다.
단계 5.2.2
에 더합니다.
단계 5.2.3
최종 답은 입니다.
단계 5.3
에서의 2차 미분값은 입니다. 이 값이 음수이므로 2차 도함수는 구간에서 감소합니다.
이므로 에서 감소함
이므로 에서 감소함
단계 6
구간에 속한 값을 2차 도함수에 대입하여 증가하는지 또는 감소하는지를 판단합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
수식에서 변수 을 대입합니다.
단계 6.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
을 곱합니다.
단계 6.2.2
에 더합니다.
단계 6.2.3
최종 답은 입니다.
단계 6.3
에서의 이계도함수는 입니다. 이 값이 양수이므로 이계도함수는 구간에서 증가합니다.
이므로 에서 증가함
이므로 에서 증가함
단계 7
변곡점이란 곡선의 오목함이 양에서 음으로 또는 음에서 양으로 바뀌는 점을 말합니다. 이 경우 변곡점은 입니다.
단계 8