문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
로 둡니다. 를 구합니다.
단계 1.1.1
를 미분합니다.
단계 1.1.2
미분합니다.
단계 1.1.2.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.2.2
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.1.3
의 값을 구합니다.
단계 1.1.3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.3.3
에 을 곱합니다.
단계 1.1.4
를 에 더합니다.
단계 1.2
와 를 사용해 문제를 바꿔 씁니다.
단계 2
와 을 묶습니다.
단계 3
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
와 을 묶습니다.
단계 5
멱의 법칙에 의해 를 에 대해 적분하면 가 됩니다.
단계 6
단계 6.1
을 로 바꿔 씁니다.
단계 6.2
간단히 합니다.
단계 6.2.1
와 을 묶습니다.
단계 6.2.2
와 을 묶습니다.
단계 6.2.3
에 을 곱합니다.
단계 6.2.4
에서 를 인수분해합니다.
단계 6.2.5
공약수로 약분합니다.
단계 6.2.5.1
에서 를 인수분해합니다.
단계 6.2.5.2
공약수로 약분합니다.
단계 6.2.5.3
수식을 다시 씁니다.
단계 6.2.5.4
을 로 나눕니다.
단계 6.2.6
에서 를 인수분해합니다.
단계 6.2.7
공약수로 약분합니다.
단계 6.2.7.1
에서 를 인수분해합니다.
단계 6.2.7.2
공약수로 약분합니다.
단계 6.2.7.3
수식을 다시 씁니다.
단계 7
를 모두 로 바꿉니다.