미적분 예제

적분 계산하기 구간 pi/3 에서 2pi 까지의 x 에 대한 4cos(x)^3sin(x) 의 적분
단계 1
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 2
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
를 미분합니다.
단계 2.1.2
에 대해 미분하면입니다.
단계 2.2
에 극한의 하한을 대입합니다.
단계 2.3
의 정확한 값은 입니다.
단계 2.4
에 극한의 상한을 대입합니다.
단계 2.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
각이 보다 크거나 같고 보다 작을 때까지 한 바퀴인 를 여러 번 뺍니다.
단계 2.5.2
의 정확한 값은 입니다.
단계 2.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 2.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 3
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
을 곱합니다.
단계 5
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 6
을 묶습니다.
단계 7
대입하여 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
, 일 때, 값을 계산합니다.
단계 7.2
1의 모든 거듭제곱은 1입니다.
단계 8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
공통분모를 가진 분자끼리 묶습니다.
단계 8.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
에 곱의 미분 법칙을 적용합니다.
단계 8.2.2
1의 모든 거듭제곱은 1입니다.
단계 8.2.3
승 합니다.
단계 8.3
을(를) 공통분모가 있는 분수로 표현합니다.
단계 8.4
공통분모를 가진 분자끼리 묶습니다.
단계 8.5
에서 을 뺍니다.
단계 8.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.6.1
에서 를 인수분해합니다.
단계 8.6.2
공약수로 약분합니다.
단계 8.6.3
수식을 다시 씁니다.
단계 9
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: