미적분 예제

적분 계산하기 x 에 대한 sin(pix)^2cos(pix)^5 의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4
을 곱합니다.
단계 1.2
를 사용해 문제를 바꿔 씁니다.
단계 2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
을 묶습니다.
단계 2.2
을 묶습니다.
단계 3
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
로 인수분해합니다.
단계 5
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
에서 를 인수분해합니다.
단계 5.2
을 지수 형태로 바꿔 씁니다.
단계 6
피타고라스 항등식을 이용하여 로 바꿔 씁니다.
단계 7
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1.1
를 미분합니다.
단계 7.1.2
에 대해 미분하면입니다.
단계 7.2
를 사용해 문제를 바꿔 씁니다.
단계 8
을 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
로 바꿔 씁니다.
단계 8.2
분배 법칙을 적용합니다.
단계 8.3
분배 법칙을 적용합니다.
단계 8.4
분배 법칙을 적용합니다.
단계 8.5
분배 법칙을 적용합니다.
단계 8.6
분배 법칙을 적용합니다.
단계 8.7
분배 법칙을 적용합니다.
단계 8.8
를 옮깁니다.
단계 8.9
괄호를 옮깁니다.
단계 8.10
를 옮깁니다.
단계 8.11
를 옮깁니다.
단계 8.12
괄호를 옮깁니다.
단계 8.13
를 옮깁니다.
단계 8.14
를 옮깁니다.
단계 8.15
괄호를 옮깁니다.
단계 8.16
괄호를 옮깁니다.
단계 8.17
를 옮깁니다.
단계 8.18
을 곱합니다.
단계 8.19
을 곱합니다.
단계 8.20
을 곱합니다.
단계 8.21
마이너스 부호를 앞으로 보냅니다.
단계 8.22
지수 법칙 을 이용하여 지수를 합칩니다.
단계 8.23
에 더합니다.
단계 8.24
을 곱합니다.
단계 8.25
마이너스 부호를 앞으로 보냅니다.
단계 8.26
지수 법칙 을 이용하여 지수를 합칩니다.
단계 8.27
에 더합니다.
단계 8.28
을 곱합니다.
단계 8.29
을 곱합니다.
단계 8.30
지수 법칙 을 이용하여 지수를 합칩니다.
단계 8.31
에 더합니다.
단계 8.32
지수 법칙 을 이용하여 지수를 합칩니다.
단계 8.33
에 더합니다.
단계 8.34
에서 을 뺍니다.
단계 8.35
을 다시 정렬합니다.
단계 8.36
를 옮깁니다.
단계 9
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 10
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 11
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 12
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 13
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 14
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 14.1
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 14.1.1
을 묶습니다.
단계 14.1.2
을 묶습니다.
단계 14.1.3
을 묶습니다.
단계 14.2
간단히 합니다.
단계 15
각 적분 대입 변수를 다시 치환합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.1
를 모두 로 바꿉니다.
단계 15.2
를 모두 로 바꿉니다.
단계 16
항을 다시 정렬합니다.