미적분 예제

합 계산하기 k=1 부터 30 까지 k(k-2)(k+2) 의 합
단계 1
합을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
분배 법칙을 적용합니다.
단계 1.2
을 곱합니다.
단계 1.3
의 왼쪽으로 이동하기
단계 1.4
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
분배 법칙을 적용합니다.
단계 1.4.2
분배 법칙을 적용합니다.
단계 1.4.3
분배 법칙을 적용합니다.
단계 1.5
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1.1.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1.1.1.1
승 합니다.
단계 1.5.1.1.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.5.1.1.2
에 더합니다.
단계 1.5.1.2
의 왼쪽으로 이동하기
단계 1.5.1.3
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1.3.1
를 옮깁니다.
단계 1.5.1.3.2
을 곱합니다.
단계 1.5.1.4
을 곱합니다.
단계 1.5.2
에서 을 뺍니다.
단계 1.5.3
에 더합니다.
단계 1.6
합을 다시 씁니다.
단계 2
합의 법칙이 성립되도록 합을 더 작은 크기의 부분합으로 나눕니다.
단계 3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
차수가 인 다항식의 합에 대한 공식은 다음과 같습니다:
단계 3.2
공식에 값을 대입합니다.
단계 3.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
에 더합니다.
단계 3.3.1.2
승 합니다.
단계 3.3.1.3
승 합니다.
단계 3.3.2
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
을 곱합니다.
단계 3.3.2.2
로 나눕니다.
단계 4
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
차수가 인 다항식의 합에 대한 공식은 다음과 같습니다:
단계 4.2
공식에 값을 대입하고 첫째 항을 곱합니다.
단계 4.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1.1
에 더합니다.
단계 4.3.1.2
을 곱합니다.
단계 4.3.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
에서 를 인수분해합니다.
단계 4.3.2.2
공약수로 약분합니다.
단계 4.3.2.3
수식을 다시 씁니다.
단계 4.3.3
을 곱합니다.
단계 5
합계 결과를 더합니다.
단계 6
에서 을 뺍니다.