미적분 예제

Trouver la dérivée - d/dx (sin(3x)^2)/(cos(3x))
단계 1
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
를 모두 로 바꿉니다.
단계 3
의 왼쪽으로 이동하기
단계 4
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.2
에 대해 미분하면입니다.
단계 4.3
를 모두 로 바꿉니다.
단계 5
승 합니다.
단계 6
승 합니다.
단계 7
지수 법칙 을 이용하여 지수를 합칩니다.
단계 8
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
에 더합니다.
단계 8.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 8.3
을 곱합니다.
단계 8.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 8.5
을 곱합니다.
단계 9
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 9.2
에 대해 미분하면입니다.
단계 9.3
를 모두 로 바꿉니다.
단계 10
곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
을 곱합니다.
단계 10.2
을 곱합니다.
단계 11
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
를 옮깁니다.
단계 11.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
승 합니다.
단계 11.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 11.3
에 더합니다.
단계 12
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 13
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 14
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 14.1
을 곱합니다.
단계 14.2
의 왼쪽으로 이동하기