미적분 예제

Résoudre pour t 2500=100(1+0.2t+0.02t^2)
단계 1
로 방정식을 다시 씁니다.
단계 2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
의 각 항을 로 나눕니다.
단계 2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
공약수로 약분합니다.
단계 2.2.1.2
로 나눕니다.
단계 2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
로 나눕니다.
단계 3
방정식의 양변에서 를 뺍니다.
단계 4
에서 을 뺍니다.
단계 5
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.1
에서 를 인수분해합니다.
단계 5.1.2
에서 를 인수분해합니다.
단계 5.1.3
에서 를 인수분해합니다.
단계 5.1.4
에서 를 인수분해합니다.
단계 5.1.5
에서 를 인수분해합니다.
단계 5.2
로 정의합니다. 식에 나타나는 모든 로 바꿉니다.
단계 5.3
AC 방법을 이용하여 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
형태를 이용합니다. 곱이 이고 합이 인 정수 쌍을 찾습니다. 이 경우 곱은 이고 합은 입니다.
단계 5.3.2
이 정수들을 이용하여 인수분해된 형태를 씁니다.
단계 5.4
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1
를 모두 로 바꿉니다.
단계 5.4.2
불필요한 괄호를 제거합니다.
단계 6
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 7
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
와 같다고 둡니다.
단계 7.2
방정식의 양변에 를 더합니다.
단계 8
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
와 같다고 둡니다.
단계 8.2
방정식의 양변에서 를 뺍니다.
단계 9
을 참으로 만드는 모든 값이 최종 해가 됩니다.