미적분 예제

그래프 자연로그 1+x^2
단계 1
점근선을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로그의 진수를 0으로 둡니다.
단계 1.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
방정식의 양변에서 를 뺍니다.
단계 1.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 1.2.3
로 바꿔 씁니다.
단계 1.2.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 1.2.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 1.2.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 1.3
에서 수직점근선을 가집니다.
수직점근선:
수직점근선:
단계 2
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
수식에서 변수 을 대입합니다.
단계 2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
1의 모든 거듭제곱은 1입니다.
단계 2.2.2
에 더합니다.
단계 2.2.3
최종 답은 입니다.
단계 2.3
를 소수로 변환합니다.
단계 3
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
수식에서 변수 을 대입합니다.
단계 3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
승 합니다.
단계 3.2.2
에 더합니다.
단계 3.2.3
최종 답은 입니다.
단계 3.3
를 소수로 변환합니다.
단계 4
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
수식에서 변수 을 대입합니다.
단계 4.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
승 합니다.
단계 4.2.2
에 더합니다.
단계 4.2.3
최종 답은 입니다.
단계 4.3
를 소수로 변환합니다.
단계 5
로그 함수의 그래프는 수직점근선인 점들을 사용하여 그릴 수 있습니다.
수직점근선:
단계 6