미적분 예제

극대값 및 극소값 구하기 f(x)=x^4-4x^2
Step 1
함수의 1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에 대해 일정하므로 에 대한 의 미분은 입니다.
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
을 곱합니다.
Step 2
함수의 2차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에 대해 일정하므로 에 대한 의 미분은 입니다.
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
을 곱합니다.
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에 대해 일정하므로 에 대한 의 미분은 입니다.
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
을 곱합니다.
Step 3
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
Step 4
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에 대해 일정하므로 에 대한 의 미분은 입니다.
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
을 곱합니다.
에 대한 1차 도함수는 입니다.
Step 5
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
1차 도함수가 이 되게 합니다.
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에서 를 인수분해합니다.
에서 를 인수분해합니다.
에서 를 인수분해합니다.
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
와 같다고 둡니다.
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
와 같다고 둡니다.
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
방정식의 양변에 를 더합니다.
방정식의 양변에 제곱근을 취하여 좌변의 지수를 소거합니다.
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
해의 양수와 음수 부분 모두 최종 해가 됩니다.
을 참으로 만드는 모든 값이 최종 해가 됩니다.
Step 6
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
Step 7
계산할 임계점.
Step 8
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
Step 9
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을 여러 번 거듭제곱해도 이 나옵니다.
을 곱합니다.
에서 을 뺍니다.
Step 10
이계도함수가 음수이므로 은 극대값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극대값입니다
Step 11
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을 여러 번 거듭제곱해도 이 나옵니다.
을 여러 번 거듭제곱해도 이 나옵니다.
을 곱합니다.
에 더합니다.
최종 답은 입니다.
Step 12
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
Step 13
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을(를) 사용하여 을(를) (으)로 다시 씁니다.
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
을 묶습니다.
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
공약수로 약분합니다.
수식을 다시 씁니다.
지수값을 계산합니다.
을 곱합니다.
에서 을 뺍니다.
Step 14
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
Step 15
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을(를) 사용하여 을(를) (으)로 다시 씁니다.
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
을 묶습니다.
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에서 를 인수분해합니다.
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에서 를 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
로 나눕니다.
승 합니다.
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을(를) 사용하여 을(를) (으)로 다시 씁니다.
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
을 묶습니다.
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
공약수로 약분합니다.
수식을 다시 씁니다.
지수값을 계산합니다.
을 곱합니다.
에서 을 뺍니다.
최종 답은 입니다.
Step 16
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
Step 17
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에 곱의 미분 법칙을 적용합니다.
승 합니다.
을 곱합니다.
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을(를) 사용하여 을(를) (으)로 다시 씁니다.
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
을 묶습니다.
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
공약수로 약분합니다.
수식을 다시 씁니다.
지수값을 계산합니다.
을 곱합니다.
에서 을 뺍니다.
Step 18
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
Step 19
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
수식에서 변수 을 대입합니다.
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에 곱의 미분 법칙을 적용합니다.
승 합니다.
을 곱합니다.
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을(를) 사용하여 을(를) (으)로 다시 씁니다.
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
을 묶습니다.
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에서 를 인수분해합니다.
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
에서 를 인수분해합니다.
공약수로 약분합니다.
수식을 다시 씁니다.
로 나눕니다.
승 합니다.
에 곱의 미분 법칙을 적용합니다.
승 합니다.
을 곱합니다.
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
을(를) 사용하여 을(를) (으)로 다시 씁니다.
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
을 묶습니다.
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
공약수로 약분합니다.
수식을 다시 씁니다.
지수값을 계산합니다.
을 곱합니다.
에서 을 뺍니다.
최종 답은 입니다.
Step 20
에 대한 극값입니다.
은 극댓값임
은 극솟값임
은 극솟값임
Step 21
쿠키 및 개인 정보
본 웹사이트는 최상의 웹사이트 경험을 제공하기 위해 쿠기를 사용합니다.
자세한 정보