미적분 예제

역함수 구하기 f(x)=e^(2x-1)
단계 1
을(를) 방정식으로 씁니다.
단계 2
변수를 서로 바꿉니다.
단계 3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
로 방정식을 다시 씁니다.
단계 3.2
지수에서 변수를 제거하기 위하여 방정식의 양변에 자연로그를 취합니다.
단계 3.3
왼편을 확장합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 로그 밖으로 내보내서 을 전개합니다.
단계 3.3.2
의 자연로그값은 입니다.
단계 3.3.3
을 곱합니다.
단계 3.4
방정식의 양변에 를 더합니다.
단계 3.5
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
의 각 항을 로 나눕니다.
단계 3.5.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.2.1.1
공약수로 약분합니다.
단계 3.5.2.1.2
로 나눕니다.
단계 4
을 대입하여 최종 답을 얻습니다.
단계 5
증명하려면 의 역함수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
역함수를 증명하려면 인지 확인합니다.
단계 5.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.1
합성함수식을 세웁니다.
단계 5.2.2
값을 에 대입하여 값을 계산합니다.
단계 5.2.3
공통분모를 가진 분자끼리 묶습니다.
단계 5.2.4
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.4.1
로그 공식을 이용해 지수에서 를 바깥으로 빼냅니다.
단계 5.2.4.2
의 자연로그값은 입니다.
단계 5.2.4.3
을 곱합니다.
단계 5.2.5
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.5.1
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.5.1.1
에 더합니다.
단계 5.2.5.1.2
에 더합니다.
단계 5.2.5.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.2.5.2.1
공약수로 약분합니다.
단계 5.2.5.2.2
로 나눕니다.
단계 5.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
합성함수식을 세웁니다.
단계 5.3.2
값을 에 대입하여 값을 계산합니다.
단계 5.3.3
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1.1
로 바꿔 씁니다.
단계 5.3.3.1.2
를 로그 안으로 옮겨 을 간단히 합니다.
단계 5.3.3.2
분배 법칙을 적용합니다.
단계 5.3.3.3
를 로그 안으로 옮겨 을 간단히 합니다.
단계 5.3.3.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.4.1
공약수로 약분합니다.
단계 5.3.3.4.2
수식을 다시 씁니다.
단계 5.3.3.5
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.5.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.5.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 5.3.3.5.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.5.1.2.1
공약수로 약분합니다.
단계 5.3.3.5.1.2.2
수식을 다시 씁니다.
단계 5.3.3.5.2
간단히 합니다.
단계 5.3.4
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.4.1
에서 을 뺍니다.
단계 5.3.4.2
에 더합니다.
단계 5.3.5
지수와 로그는 역함수 관계입니다.
단계 5.4
이므로, 의 역함수입니다.