문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
를 옮깁니다.
단계 1.2
와 을 다시 정렬합니다.
단계 2
를 의 함수로 둡니다 .
단계 3
단계 3.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 3.2
의 값을 구합니다.
단계 3.2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.3
에 을 곱합니다.
단계 3.3
의 값을 구합니다.
단계 3.3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3.3
에 을 곱합니다.
단계 3.4
상수의 미분 법칙을 이용하여 미분합니다.
단계 3.4.1
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 3.4.2
를 에 더합니다.
단계 4
단계 4.1
방정식의 양변에서 를 뺍니다.
단계 4.2
의 각 항을 로 나누고 식을 간단히 합니다.
단계 4.2.1
의 각 항을 로 나눕니다.
단계 4.2.2
좌변을 간단히 합니다.
단계 4.2.2.1
의 공약수로 약분합니다.
단계 4.2.2.1.1
공약수로 약분합니다.
단계 4.2.2.1.2
을 로 나눕니다.
단계 4.2.3
우변을 간단히 합니다.
단계 4.2.3.1
을 로 나눕니다.
단계 5
단계 5.1
수식에서 변수 에 을 대입합니다.
단계 5.2
결과를 간단히 합니다.
단계 5.2.1
각 항을 간단히 합니다.
단계 5.2.1.1
를 승 합니다.
단계 5.2.1.2
에 을 곱합니다.
단계 5.2.1.3
에 을 곱합니다.
단계 5.2.2
숫자를 더해 식을 간단히 합니다.
단계 5.2.2.1
를 에 더합니다.
단계 5.2.2.2
를 에 더합니다.
단계 5.2.3
최종 답은 입니다.
단계 6
함수 의 수평 접선은 입니다.
단계 7